python:numpy数据类型及数组创建

it2023-10-10  90

numpy数据类型及数组创建

1. 常量numpy.nahnumpy.infnumpy.pinumpy.e 2. 数据类型3. 时间日期和时间增量datetime64timedelta64 4. 数组创建通过array()函数进行创建narray通过asarray()函数进行创建narray通过fromfunction()函数进行创建narray零数组zeros()zeros_like() 1数组ones()ones_like() 空数组empty()empty_like() 单位数组eye()identity() 对角数组diag 常数数组full()full_like() 利用数值范围来创建ndarrayarange()linspace()logspace()numpy.random.rand() 结构数组的创建利用字典来定义结构用包含多个元组的列表来定义结构 数组的属性numpy.ndarray.ndimnumpy.ndarray.shapenumpy.ndarray.sizenumpy.ndarray.dtype ndarraynumpy.ndarray.itemsize

1. 常量

numpy.nah

表示空值。

numpy.inf

表示正无穷大。

numpy.pi

表示圆周率

numpy.e

表示自然常数

2. 数据类型

numpy 的数值类型实际上是 dtype 对象的实例。

class dtype(object): def __init__(self, obj, align=False, copy=False): pass

3. 时间日期和时间增量

datetime64

带单位的日期时间类型。 默认情况下,numpy 会根据字符串自动选择对应的单位。

import numpy as np a = np.datetime64('2020-03-01') print(a, a.dtype) # 2020-03-01 datetime64[D] a = np.datetime64('2020-03') print(a, a.dtype) # 2020-03 datetime64[M] a = np.datetime64('2020-03-08 20:00:05') print(a, a.dtype) # 2020-03-08T20:00:05 datetime64[s] a = np.datetime64('2020-03-08 20:00') print(a, a.dtype) # 2020-03-08T20:00 datetime64[m] a = np.datetime64('2020-03-08 20') print(a, a.dtype) # 2020-03-08T20 datetime64[h]

可以强制指定使用的单位。

import numpy as np a = np.datetime64('2020-03', 'D') print(a, a.dtype) # 2020-03-01 datetime64[D] a = np.datetime64('2020-03', 'Y') print(a, a.dtype) # 2020 datetime64[Y] print(np.datetime64('2020-03') == np.datetime64('2020-03-01')) # True print(np.datetime64('2020-03') == np.datetime64('2020-03-02')) #False

使用arange()创建 datetime64 数组,用于生成日期范围。

import numpy as np a = np.arange('2020-08-01', '2020-08-10', dtype=np.datetime64) print(a) # ['2020-08-01' '2020-08-02' '2020-08-03' '2020-08-04' '2020-08-05' # '2020-08-06' '2020-08-07' '2020-08-08' '2020-08-09'] print(a.dtype) # datetime64[D] a = np.arange('2020-08-01 20:00', '2020-08-10', dtype=np.datetime64) print(a) # ['2020-08-01T20:00' '2020-08-01T20:01' '2020-08-01T20:02' ... # '2020-08-09T23:57' '2020-08-09T23:58' '2020-08-09T23:59'] print(a.dtype) # datetime64[m] a = np.arange('2020-05', '2020-12', dtype=np.datetime64) print(a) # ['2020-05' '2020-06' '2020-07' '2020-08' '2020-09' '2020-10' '2020-11'] print(a.dtype) # datetime64[M]

numpy.datetime64 与 datetime.datetime 相互转换

import numpy as np import datetime dt = datetime.datetime(year=2020, month=6, day=1, hour=20, minute=5, second=30) dt64 = np.datetime64(dt, 's') print(dt64, dt64.dtype) # 2020-06-01T20:05:30 datetime64[s] dt2 = dt64.astype(datetime.datetime) print(dt2, type(dt2)) # 2020-06-01 20:05:30 <class 'datetime.datetime'>

timedelta64

表示两个 datetime64 之间的差。

import numpy as np a = np.timedelta64(1, 'Y') b = np.timedelta64(a, 'M') print(a) # 1 years print(b) # 12 months c = np.timedelta64(1, 'h') d = np.timedelta64(c, 'm') print(c) # 1 hours print(d) # 60 minutes

timedelta64 的运算。

import numpy as np a = np.timedelta64(1, 'Y') b = np.timedelta64(6, 'M') c = np.timedelta64(1, 'W') d = np.timedelta64(1, 'D') e = np.timedelta64(10, 'D') print(a) # 1 years print(b) # 6 months print(a + b) # 18 months print(a - b) # 6 months print(2 * a) # 2 years print(a / b) # 2.0 print(c / d) # 7.0 print(c % e) # 7 days

4. 数组创建

通过array()函数进行创建narray

import numpy as np # 创建一维数组 a = np.array([0, 1, 2, 3, 4]) b = np.array((0, 1, 2, 3, 4)) print(a, type(a)) # [0 1 2 3 4] <class 'numpy.ndarray'> print(b, type(b)) # [0 1 2 3 4] <class 'numpy.ndarray'> # 创建二维数组 c = np.array([[11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], [26, 27, 28, 29, 30], [31, 32, 33, 34, 35]]) print(c, type(c)) # [[11 12 13 14 15] # [16 17 18 19 20] # [21 22 23 24 25] # [26 27 28 29 30] # [31 32 33 34 35]] <class 'numpy.ndarray'> # 创建三维数组 d = np.array([[(1.5, 2, 3), (4, 5, 6)], [(3, 2, 1), (4, 5, 6)]]) print(d, type(d)) # [[[1.5 2. 3. ] # [4. 5. 6. ]] # # [[3. 2. 1. ] # [4. 5. 6. ]]] <class 'numpy.ndarray'>

通过asarray()函数进行创建narray

array()和asarray()主要区别就是当数据源是ndarray 时,array()仍然会 copy 出一个副本,占用新的内存,但不改变 dtype 时 asarray()不会。

import numpy as np x = [[1, 1, 1], [1, 1, 1], [1, 1, 1]] y = np.array(x) z = np.asarray(x) x[1][2] = 2 print(x,type(x)) # [[1, 1, 1], [1, 1, 2], [1, 1, 1]] <class 'list'> print(y,type(y)) # [[1 1 1] # [1 1 1] # [1 1 1]] <class 'numpy.ndarray'> print(z,type(z)) # [[1 1 1] # [1 1 1] # [1 1 1]] <class 'numpy.ndarray'>

通过fromfunction()函数进行创建narray

import numpy as np def f(x, y): return 10 * x + y x = np.fromfunction(f, (5, 4), dtype=int) print(x) # [[ 0 1 2 3] # [10 11 12 13] # [20 21 22 23] # [30 31 32 33] # [40 41 42 43]] x = np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int) print(x) # [[ True False False] # [False True False] # [False False True]] x = np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int) print(x) # [[0 1 2] # [1 2 3] # [2 3 4]]

零数组

zeros()

返回给定形状和类型的零数组。

zeros_like()

返回与给定数组形状和类型相同的零数组。

import numpy as np x = np.zeros(5) print(x) # [0. 0. 0. 0. 0.] x = np.zeros([2, 3]) print(x) # [[0. 0. 0.] # [0. 0. 0.]] x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.zeros_like(x) print(y) # [[0 0 0] # [0 0 0]]

1数组

ones()

返回给定形状和类型的1数组。

ones_like()

返回与给定数组形状和类型相同的1数组。

import numpy as np x = np.ones(5) print(x) # [1. 1. 1. 1. 1.] x = np.ones([2, 3]) print(x) # [[1. 1. 1.] # [1. 1. 1.]] x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.ones_like(x) print(y) # [[1 1 1] # [1 1 1]]

空数组

empty()

返回一个空数组,数组元素为随机数。

empty_like()

返回与给定数组具有相同形状和类型的新数组。

import numpy as np x = np.empty(5) print(x) # [1.95821574e-306 1.60219035e-306 1.37961506e-306 # 9.34609790e-307 1.24610383e-306] x = np.empty((3, 2)) print(x) # [[1.60220393e-306 9.34587382e-307] # [8.45599367e-307 7.56598449e-307] # [1.33509389e-306 3.59412896e-317]] x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.empty_like(x) print(y) # [[ 7209029 6422625 6619244] # [ 100 707539280 504]]

单位数组

eye()

返回一个对角线上为1,其它地方为零的单位数组。

identity()

返回一个方的单位数组。

import numpy as np x = np.eye(4) print(x) # [[1. 0. 0. 0.] # [0. 1. 0. 0.] # [0. 0. 1. 0.] # [0. 0. 0. 1.]] x = np.eye(2, 3) print(x) # [[1. 0. 0.] # [0. 1. 0.]] x = np.identity(4) print(x) # [[1. 0. 0. 0.] # [0. 1. 0. 0.] # [0. 0. 1. 0.] # [0. 0. 0. 1.]]

对角数组

diag

提取对角线或构造对角数组。

import numpy as np x = np.arange(9).reshape((3, 3)) print(x) # [[0 1 2] # [3 4 5] # [6 7 8]] print(np.diag(x)) # [0 4 8] print(np.diag(x, k=1)) # [1 5] print(np.diag(x, k=-1)) # [3 7] v = [1, 3, 5, 7] x = np.diag(v) print(x) # [[1 0 0 0] # [0 3 0 0] # [0 0 5 0] # [0 0 0 7]]

常数数组

full()

返回一个常数数组。

full_like()

返回与给定数组具有相同形状和类型的常数数组。

import numpy as np x = np.full((2,), 7) print(x) # [7 7] x = np.full(2, 7) print(x) # [7 7] x = np.full((2, 7), 7) print(x) # [[7 7 7 7 7 7 7] # [7 7 7 7 7 7 7]] x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.full_like(x, 7) print(y) # [[7 7 7] # [7 7 7]]

利用数值范围来创建ndarray

arange()

返回给定间隔内的均匀间隔的值。

linspace()

返回指定间隔内的等间隔数字。

logspace()

返回数以对数刻度均匀分布。

numpy.random.rand()

返回一个由[0,1)内的随机数组成的数组。

import numpy as np x = np.arange(5) print(x) # [0 1 2 3 4] x = np.arange(3, 7, 2) print(x) # [3 5] x = np.linspace(start=0, stop=2, num=9) print(x) # [0. 0.25 0.5 0.75 1. 1.25 1.5 1.75 2. ] x = np.logspace(0, 1, 5) print(np.around(x, 2)) # [ 1. 1.78 3.16 5.62 10. ] #np.around 返回四舍五入后的值,可指定精度。 # around(a, decimals=0, out=None) # a 输入数组 # decimals 要舍入的小数位数。 默认值为0。 如果为负,整数将四舍五入到小数点左侧的位置 x = np.linspace(start=0, stop=1, num=5) x = [10 ** i for i in x] print(np.around(x, 2)) # [ 1. 1.78 3.16 5.62 10. ] x = np.random.random(5) print(x) # [0.41768753 0.16315577 0.80167915 0.99690199 0.11812291] x = np.random.random([2, 3]) print(x) # [[0.41151858 0.93785153 0.57031309] # [0.13482333 0.20583516 0.45429181]]

结构数组的创建

首先需要定义结构,然后利用np.array()来创建数组,其参数dtype为定义的结构。

利用字典来定义结构
import numpy as np personType = np.dtype({ 'names': ['name', 'age', 'weight'], 'formats': ['U30', 'i8', 'f8']}) a = np.array([('Liming', 24, 63.9), ('Mike', 15, 67.), ('Jan', 34, 45.8)], dtype=personType) print(a, type(a)) # [('Liming', 24, 63.9) ('Mike', 15, 67. ) ('Jan', 34, 45.8)] # <class 'numpy.ndarray'>
用包含多个元组的列表来定义结构
import numpy as np personType = np.dtype([('name', 'U30'), ('age', 'i8'), ('weight', 'f8')]) a = np.array([('Liming', 24, 63.9), ('Mike', 15, 67.), ('Jan', 34, 45.8)], dtype=personType) print(a, type(a)) # [('Liming', 24, 63.9) ('Mike', 15, 67. ) ('Jan', 34, 45.8)] # <class 'numpy.ndarray'> # 结构数组的取值方式和一般数组差不多,可以通过下标取得元素: print(a[0]) # ('Liming', 24, 63.9) print(a[-2:]) # [('Mike', 15, 67. ) ('Jan', 34, 45.8)] # 我们可以使用字段名作为下标获取对应的值 print(a['name']) # ['Liming' 'Mike' 'Jan'] print(a['age']) # [24 15 34] print(a['weight']) # [63.9 67. 45.8]

数组的属性

在使用 numpy 时,你会想知道数组的某些信息。很幸运,在这个包里边包含了很多便捷的方法,可以给你想要的信息。

numpy.ndarray.ndim

用于返回数组的维数(轴的个数)也称为秩,一维数组的秩为 1,二维数组的秩为 2,以此类推。

numpy.ndarray.shape

表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。

numpy.ndarray.size

数组中所有元素的总量,相当于数组的shape中所有元素的乘积,例如矩阵的元素总量为行与列的乘积。

numpy.ndarray.dtype ndarray

对象的元素类型。

numpy.ndarray.itemsize

以字节的形式返回数组中每一个元素的大小

import numpy as np a = np.array([1, 2, 3, 4, 5]) print(a.shape) # (5,) print(a.dtype) # int32 print(a.size) # 5 print(a.ndim) # 1 print(a.itemsize) # 4 b = np.array([[1, 2, 3], [4, 5, 6.0]]) print(b.shape) # (2, 3) print(b.dtype) # float64 print(b.size) # 6 print(b.ndim) # 2 print(b.itemsize) # 8
最新回复(0)