应用场景-修路问题
看一个应用场景和问题:
胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?
思路: 将10条边,连接即可,但是总的里程数不是最小.正确的思路,就是尽可能的选择少的路线,并且每条路线最小,保证总里程数最少
最小生成树
修路问题本质就是就是最小生成树问题, 先介绍一下最小生成树(Minimum Cost Spanning Tree),简称MST。
给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树
N个顶点,一定有N-1条边
包含全部顶点
N-1条边都在图中
举例说明(如图:)
求最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法
普里姆算法介绍
普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图普利姆的算法如下:
设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合中,将边(ui,vj)加入集合D中,标记visited[vj]=1重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边提示: 单独看步骤很难理解,我们通过代码来讲解,比较好理解.
图解
代码
package prim
;
import java
.util
.Arrays
;
public class PrimAlgorithm {
public static void main(String
[] args
) {
char[] data
= new char[]{'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int verxs
= data
.length
;
int[][] weight
= new int[][]{
{10000, 5, 7, 10000, 10000, 10000, 2},
{5, 10000, 10000, 9, 10000, 10000, 3},
{7, 10000, 10000, 10000, 8, 10000, 10000},
{10000, 9, 10000, 10000, 10000, 4, 10000},
{10000, 10000, 8, 10000, 10000, 5, 4},
{10000, 10000, 10000, 4, 5, 10000, 6},
{2, 3, 10000, 10000, 4, 6, 10000}};
MGraph mGraph
= new MGraph(verxs
);
MinTree minTree
= new MinTree();
minTree
.createGraph(mGraph
, verxs
, data
, weight
);
minTree
.showGraph(mGraph
);
minTree
.prim(mGraph
,0);
}
}
class MinTree {
public void createGraph(MGraph graph
, int verxs
, char[] data
, int[][] weight
) {
int i
, j
;
for (i
= 0; i
< verxs
; i
++) {
graph
.data
[i
] = data
[i
];
for (j
= 0; j
< verxs
; j
++) {
graph
.weight
[i
][j
] = weight
[i
][j
];
}
}
}
public void showGraph(MGraph graph
) {
for (int[] link
: graph
.weight
) {
System
.out
.println(Arrays
.toString(link
));
}
}
public void prim(MGraph graph
, int v
) {
int visited
[] = new int[graph
.verxs
];
visited
[v
] = 1;
int h1
= -1;
int h2
= -1;
int minWeight
= 10000;
for (int k
= 1; k
< graph
.verxs
; k
++) {
for (int i
= 0; i
< graph
.verxs
; i
++) {
for (int j
= 0; j
< graph
.verxs
; j
++) {
if (visited
[i
] == 1 && visited
[j
] == 0 && graph
.weight
[i
][j
] < minWeight
) {
minWeight
= graph
.weight
[i
][j
];
h1
= i
;
h2
= j
;
}
}
}
System
.out
.println("边<" + graph
.data
[h1
] + "," + graph
.data
[h2
] + ">权值:" + minWeight
);
visited
[h2
] = 1;
minWeight
= 10000;
}
}
}
class MGraph {
int verxs
;
char[] data
;
int[][] weight
;
public MGraph(int verxs
) {
this.verxs
= verxs
;
data
= new char[verxs
];
weight
= new int[verxs
][verxs
];
}
}