MKL源码安装,支持多核环境配置

it2023-08-13  75

MKL源码安装,支持多核环境配置

1. 安装包下载并解压

链接: Intel® Math Kernel Library (Intel® MKL).

新的改变

2. 安装

1). 解压至任意目录 2). 运行安装脚本, 默认安装至 /opt/, 可配置安装路径(建议默认安装)

$ ./install.sh

3). 在 /etc/ld.so.conf.d 下创建名为 intel-mkl.conf 的文件,内容为

/opt/intel/mkl/lib/intel64 /opt/intel/lib/intel64

然后执行

$ ldconfig -v

4). 执行

/opt/intel/mkl/bin/mklvars.sh intel64 mod

3. 环境变量设置

1) 进入startup文件编辑(bash shell)

$ vi ~/.bashrc

2)添加环境变量

export PATH=/opt/intel/bin:$PATH export LD_LIBRARY_PATH=/opt/intel/lib/intel64:/opt/intel/mkl/lib/intel64:$LD_LIBRARY_P source /opt/intel/compilers_and_libraries/linux/mkl/bin/mklvars.sh intel64

第三条语句用于 -lmkl_intel_thread库的调用实现多核并行计算 3)生效环境变量

$ source ~/.bashrc

4. 官方样例

dgemm_example.c

编译命令

gcc -I/opt/intel/mkl/include dgemm_example.c -lmkl_rt -L/opt/intel/mkl/lib/intel64 -L/opt/intel/lib/intel64 #define min(x,y) (((x) < (y)) ? (x) : (y)) #include <stdio.h> #include <stdlib.h> #include "mkl.h" int main() { double *A, *B, *C; int m, n, p, i, j; double alpha, beta; printf ("\n This example computes real matrix C=alpha*A*B+beta*C using \n" " Intel(R) MKL function dgemm, where A, B, and C are matrices and \n" " alpha and beta are double precision scalars\n\n"); m = 2000, p = 200, n = 1000; printf (" Initializing data for matrix multiplication C=A*B for matrix \n" " A(%ix%i) and matrix B(%ix%i)\n\n", m, p, p, n); alpha = 1.0; beta = 0.0; printf (" Allocating memory for matrices aligned on 64-byte boundary for better \n" " performance \n\n"); A = (double *)mkl_malloc( m*p*sizeof( double ), 64 ); B = (double *)mkl_malloc( p*n*sizeof( double ), 64 ); C = (double *)mkl_malloc( m*n*sizeof( double ), 64 ); if (A == NULL || B == NULL || C == NULL) { printf( "\n ERROR: Can't allocate memory for matrices. Aborting... \n\n"); mkl_free(A); mkl_free(B); mkl_free(C); return 1; } printf (" Intializing matrix data \n\n"); for (i = 0; i < (m*p); i++) { A[i] = (double)(i+1); } for (i = 0; i < (p*n); i++) { B[i] = (double)(-i-1); } for (i = 0; i < (m*n); i++) { C[i] = 0.0; } printf (" Computing matrix product using Intel(R) MKL dgemm function via CBLAS interface \n\n"); cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, p, alpha, A, p, B, n, beta, C, n); printf ("\n Computations completed.\n\n"); printf (" Top left corner of matrix A: \n"); for (i=0; i<min(m,6); i++) { for (j=0; j<min(p,6); j++) { printf ("%12.0f", A[j+i*p]); } printf ("\n"); } printf ("\n Top left corner of matrix B: \n"); for (i=0; i<min(p,6); i++) { for (j=0; j<min(n,6); j++) { printf ("%12.0f", B[j+i*n]); } printf ("\n"); } printf ("\n Top left corner of matrix C: \n"); for (i=0; i<min(m,6); i++) { for (j=0; j<min(n,6); j++) { printf ("%12.5G", C[j+i*n]); } printf ("\n"); } printf ("\n Deallocating memory \n\n"); mkl_free(A); mkl_free(B); mkl_free(C); printf (" Example completed. \n\n"); return 0; }
最新回复(0)