lim x → 0 ln ( e sin x + 1 − cos x 3 ) − sin x a r c t a n ( 4 1 − cos x 3 ) = _ _ _ _ _ _ . \lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})-\sin x}{arctan(4\sqrt[3]{1-\cos x})}= \_\_\_\_\_\_. x→0limarctan(431−cosx )ln(esinx+31−cosx )−sinx=______.
设隐函数 y = y ( x ) y=y(x) y=y(x)由方程 y 2 ( x − y ) = x 2 y^2(x-y)=x^2 y2(x−y)=x2所确定,则 ∫ d x y 2 = _ _ _ _ _ _ . \int{\dfrac{\mathrm{d} x}{y^2}}=\_\_\_\_\_\_. ∫y2dx=______.
定积分 ∫ 0 π 2 e x ( 1 + sin x ) 1 + cos x d x = _ _ _ _ _ _ . \int_{0}^{\frac{\pi}{2}}\dfrac{e^x(1+\sin x)}{1+\cos x}\mathrm{d} x=\_\_\_\_\_\_. ∫02π1+cosxex(1+sinx)dx=______.
已知 d u ( x , y ) = y d x − x d y 3 x 2 − 2 x y + 3 y 2 \mathrm{d} u(x,y)=\dfrac{y\mathrm{d}x-x\mathrm{d}y}{3x^2-2xy+3y^2} du(x,y)=3x2−2xy+3y2ydx−xdy,则 u ( x , y ) = _ _ _ _ _ _ . u(x,y)=\_\_\_\_\_\_. u(x,y)=______.
设 a , b , c , μ > 0 a,b,c,\mu > 0 a,b,c,μ>0, 曲面 x y z = μ xyz=\mu xyz=μ与曲面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1 相切,则 μ = _ _ _ _ _ _ . \mu=\_\_\_\_\_\_. μ=______.
lim x → 0 ln ( e sin x + 1 − cos x 3 ) − sin x a r c t a n ( 4 1 − cos x 3 ) = _ _ _ _ _ _ . \lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})-\sin x}{arctan(4\sqrt[3]{1-\cos x})}= \_\_\_\_\_\_. x→0limarctan(431−cosx )ln(esinx+31−cosx )−sinx=______.
解:
lim x → 0 ln ( e sin x + 1 − cos x 3 ) − sin x a r c t a n ( 4 1 − cos x 3 ) \lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})-\sin x}{arctan(4\sqrt[3]{1-\cos x})} x→0limarctan(431−cosx )ln(esinx+31−cosx )−sinx = lim x → 0 ln ( e sin x + 1 − cos x 3 ) a r c t a n ( 4 1 − cos x 3 ) − lim x → 0 sin x a r c t a n ( 4 1 − cos x 3 ) =\lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})}{arctan(4\sqrt[3]{1-\cos x})}-\lim_{x \rightarrow0}\dfrac{\sin x}{arctan(4\sqrt[3]{1-\cos x})} =x→0limarctan(431−cosx )ln(esinx+31−cosx )−x→0limarctan(431−cosx )sinx 若上面等式右边的两个极限分别存在,则等号成立.
可以使用 x → 0 x \rightarrow0 x→0时的等价无穷小代换求解上面等式右边的两个极限. lim x → 0 ln ( e sin x + 1 − cos x 3 ) a r c t a n ( 4 1 − cos x 3 ) \lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})}{arctan(4\sqrt[3]{1-\cos x})} x→0limarctan(431−cosx )ln(esinx+31−cosx ) = lim x → 0 e sin x + 1 − cos x 3 − 1 4 1 − cos x 3 =\lim_{x \rightarrow0}\dfrac{e^{\sin x}+\sqrt[3]{1-\cos x}-1}{4\sqrt[3]{1-\cos x}} =x→0lim431−cosx esinx+31−cosx −1 = lim x → 0 e sin x − 1 4 1 − cos x 3 + lim x → 0 1 − cos x 3 4 1 − cos x 3 =\lim_{x \rightarrow0}\dfrac{e^{\sin x}-1}{4\sqrt[3]{1-\cos x}}+\lim_{x \rightarrow0}\dfrac{\sqrt[3]{1-\cos x}}{4\sqrt[3]{1-\cos x}} =x→0lim431−cosx esinx−1+x→0lim431−cosx 31−cosx 若上面等式右边的两个极限分别存在,则等号成立. 显然, lim x → 0 1 − cos x 3 4 1 − cos x 3 = 1 4 \lim_{x \rightarrow0}\dfrac{\sqrt[3]{1-\cos x}}{4\sqrt[3]{1-\cos x}}=\dfrac{1}{4} limx→0431−cosx 31−cosx =41 而 lim x → 0 e sin x − 1 4 1 − cos x 3 = lim x → 0 sin x 4 1 2 x 2 3 = lim x → 0 x 4 1 2 x 2 3 = 0 \lim_{x \rightarrow0}\dfrac{e^{\sin x}-1}{4\sqrt[3]{1-\cos x}}=\lim_{x \rightarrow0}\dfrac{\sin x}{4\sqrt[3]{\frac{1}{2}x^2}}=\lim_{x \rightarrow0}\dfrac{x}{4\sqrt[3]{\frac{1}{2}x^2}}=0 limx→0431−cosx esinx−1=limx→04321x2 sinx=limx→04321x2 x=0 因此 lim x → 0 e sin x + 1 − cos x 3 − 1 4 1 − cos x 3 = lim x → 0 e sin x − 1 4 1 − cos x 3 + lim x → 0 1 − cos x 3 4 1 − cos x 3 \lim_{x \rightarrow0}\dfrac{e^{\sin x}+\sqrt[3]{1-\cos x}-1}{4\sqrt[3]{1-\cos x}}=\lim_{x \rightarrow0}\dfrac{e^{\sin x}-1}{4\sqrt[3]{1-\cos x}}+\lim_{x \rightarrow0}\dfrac{\sqrt[3]{1-\cos x}}{4\sqrt[3]{1-\cos x}} x→0lim431−cosx esinx+31−cosx −1=x→0lim431−cosx esinx−1+x→0lim431−cosx 31−cosx = 0 + 1 4 = 1 4 =0+\dfrac{1}{4}=\dfrac{1}{4} =0+41=41
而 lim x → 0 sin x a r c t a n ( 4 1 − cos x 3 ) = lim x → 0 x 4 1 − cos x 3 = lim x → 0 x 4 1 2 x 2 3 = 0 \lim_{x \rightarrow0}\dfrac{\sin x}{arctan(4\sqrt[3]{1-\cos x})}=\lim_{x \rightarrow0}\dfrac{x}{4\sqrt[3]{1-\cos x}}=\lim_{x \rightarrow0}\dfrac{x}{4\sqrt[3]{\frac{1}{2}x^2}}=0 limx→0arctan(431−cosx )sinx=limx→0431−cosx x=limx→04321x2 x=0
因此 lim x → 0 ln ( e sin x + 1 − cos x 3 ) − sin x a r c t a n ( 4 1 − cos x 3 ) = lim x → 0 ln ( e sin x + 1 − cos x 3 ) a r c t a n ( 4 1 − cos x 3 ) − lim x → 0 sin x a r c t a n ( 4 1 − cos x 3 ) \lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})-\sin x}{arctan(4\sqrt[3]{1-\cos x})}=\lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})}{arctan(4\sqrt[3]{1-\cos x})}-\lim_{x \rightarrow0}\dfrac{\sin x}{arctan(4\sqrt[3]{1-\cos x})} x→0limarctan(431−cosx )ln(esinx+31−cosx )−sinx=x→0limarctan(431−cosx )ln(esinx+31−cosx )−x→0limarctan(431−cosx )sinx = 1 4 − 0 = 1 4 =\dfrac{1}{4}-0=\dfrac{1}{4} =41−0=41
设隐函数 y = y ( x ) y=y(x) y=y(x)由方程 y 2 ( x − y ) = x 2 y^2(x-y)=x^2 y2(x−y)=x2所确定,则 ∫ d x y 2 = _ _ _ _ _ _ . \int{\dfrac{\mathrm{d} x}{y^2}}=\_\_\_\_\_\_. ∫y2dx=______.
思路:
对一个隐函数的含y表达式求积分或导数后,结果表达式中可能会同时含有x和y。
解决这类问题,通常需要对x和y做一个变换(如将y用x和中间变量t表示),然后将函数从隐函数形式变为参数方程的形式。这样x和y都可以用另一个中间变量t表示,然后就可以将所求积分的被积表达式进行代换,得到只含有t的被积表达式形式,之后运用一元函数积分学的知识求出积分,最后将t使用x和y回代即可得到最终的积分结果(t也可以被x和y表示)。
最后注意,不定积分千万不要忘记加C。
解:
令 y = t x y=tx y=tx,代入隐函数表达式,则有: t 2 x 2 ( x − t x ) = x 2 t^2x^2(x-tx)=x^2 t2x2(x−tx)=x2 化简得到: x = 1 t 2 ( 1 − t ) x=\dfrac{1}{t^2(1-t)} x=t2(1−t)1 因此,有: y = t x = 1 t ( 1 − t ) y=tx=\dfrac{1}{t(1-t)} y=tx=t(1−t)1
将x和y代入被积表达式,得到: ∫ d x y 2 \int{\dfrac{\mathrm{d} x}{y^2}} ∫y2dx = ∫ d ( 1 t 2 ( 1 − t ) ) 1 t 2 ( 1 − t ) 2 d t =\int \dfrac{\mathrm{d}( \dfrac{1}{t^2(1-t)})}{\dfrac{1}{t^2(1-t)^2}} \mathrm{d}t =∫t2(1−t)21d(t2(1−t)1)dt = ∫ − 2 t − 3 ( 1 − t ) − 1 + t − 2 ( 1 − t ) − 2 1 t 2 ( 1 − t ) 2 d t =\int \dfrac{-2t^{-3}(1-t)^{-1}+t^{-2}(1-t)^{-2}}{\dfrac{1}{t^2(1-t)^2}} \mathrm{d}t =∫t2(1−t)21−2t−3(1−t)−1+t−2(1−t)−2dt = ∫ ( − 2 t − 1 ( 1 − t ) + 1 ) d t =\int (-2t^{-1}(1-t)+1) \mathrm{d}t =∫(−2t−1(1−t)+1)dt = ∫ ( 3 − 2 t ) d t =\int (3-\dfrac{2}{t}) \mathrm{d}t =∫(3−t2)dt = 3 t − 2 ln ∣ t ∣ + C =3t-2\ln \left | t \right | + C =3t−2ln∣t∣+C 由于 y = t x y=tx y=tx,因此代入上式得到: ∫ d x y 2 = 3 t − 2 ln ∣ t ∣ + C \int{\dfrac{\mathrm{d} x}{y^2}}=3t-2\ln \left | t \right | + C ∫y2dx=3t−2ln∣t∣+C = 3 y x − 2 ln ∣ y x ∣ + C =3\dfrac{y}{x}-2\ln \left | \dfrac{y}{x} \right | + C =3xy−2ln∣∣∣xy∣∣∣+C
定积分 ∫ 0 π 2 e x ( 1 + sin x ) 1 + cos x d x = _ _ _ _ _ _ . \int_{0}^{\frac{\pi}{2}}\dfrac{e^x(1+\sin x)}{1+\cos x}\mathrm{d} x=\_\_\_\_\_\_. ∫02π1+cosxex(1+sinx)dx=______.
解:
∫ 0 π 2 e x ( 1 + sin x ) 1 + cos x d x \int_{0}^{\frac{\pi}{2}}\dfrac{e^x(1+\sin x)}{1+\cos x}\mathrm{d} x ∫02π1+cosxex(1+sinx)dx = ∫ 0 π 2 e x 1 + cos x d x + ∫ 0 π 2 e x sin x 1 + cos x d x = \int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\int_{0}^{\frac{\pi}{2}}\dfrac{e^x\sin x}{1+\cos x}\mathrm{d} x =∫02π1+cosxexdx+∫02π1+cosxexsinxdx = ∫ 0 π 2 e x 1 + cos x d x + ∫ 0 π 2 sin x 1 + cos x d e x = \int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\int_{0}^{\frac{\pi}{2}}\dfrac{\sin x}{1+\cos x}\mathrm{d} e^x =∫02π1+cosxexdx+∫02π1+cosxsinxdex = ∫ 0 π 2 e x 1 + cos x d x + e x sin x 1 + cos x ∣ 0 π 2 − ∫ 0 π 2 e x d sin x 1 + cos x = \int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x\mathrm{d} \dfrac{\sin x}{1+\cos x} =∫02π1+cosxexdx+1+cosxexsinx∣∣∣02π−∫02πexd1+cosxsinx = ∫ 0 π 2 e x 1 + cos x d x + e x sin x 1 + cos x ∣ 0 π 2 − ∫ 0 π 2 e x cos x ( 1 + cos x ) − sin x ( − sin x ) ( 1 + cos x ) 2 d x =\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x \dfrac{\cos x(1+\cos x)-\sin x(-\sin x)}{(1+\cos x)^2}\mathrm{d}x =∫02π1+cosxexdx+1+cosxexsinx∣∣∣02π−∫02πex(1+cosx)2cosx(1+cosx)−sinx(−sinx)dx = ∫ 0 π 2 e x 1 + cos x d x + e x sin x 1 + cos x ∣ 0 π 2 − ∫ 0 π 2 e x cos x + cos 2 x + sin 2 x ( 1 + cos x ) 2 d x =\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x \dfrac{\cos x+\cos^2 x+\sin^2 x}{(1+\cos x)^2}\mathrm{d}x =∫02π1+cosxexdx+1+cosxexsinx∣∣∣02π−∫02πex(1+cosx)2cosx+cos2x+sin2xdx = ∫ 0 π 2 e x 1 + cos x d x + e x sin x 1 + cos x ∣ 0 π 2 − ∫ 0 π 2 e x cos x + ( cos 2 x + sin 2 x ) ( 1 + cos x ) 2 d x =\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x \dfrac{\cos x+(\cos^2 x+\sin^2 x)}{(1+\cos x)^2}\mathrm{d}x =∫02π1+cosxexdx+1+cosxexsinx∣∣∣02π−∫02πex(1+cosx)2cosx+(cos2x+sin2x)dx = ∫ 0 π 2 e x 1 + cos x d x + e x sin x 1 + cos x ∣ 0 π 2 − ∫ 0 π 2 e x cos x + 1 ( 1 + cos x ) 2 d x =\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x \dfrac{\cos x+1}{(1+\cos x)^2}\mathrm{d}x =∫02π1+cosxexdx+1+cosxexsinx∣∣∣02π−∫02πex(1+cosx)2cosx+1dx = ∫ 0 π 2 e x 1 + cos x d x + e x sin x 1 + cos x ∣ 0 π 2 − ∫ 0 π 2 e x 1 + cos x d x =\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}} \dfrac{e^x}{1+\cos x}\mathrm{d}x =∫02π1+cosxexdx+1+cosxexsinx∣∣∣02π−∫02π1+cosxexdx = e x sin x 1 + cos x ∣ 0 π 2 =\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0} =1+cosxexsinx∣∣∣02π = e π 2 =e^{\frac{\pi}{2}} =e2π
已知 d u ( x , y ) = y d x − x d y 3 x 2 − 2 x y + 3 y 2 \mathrm{d} u(x,y)=\dfrac{y\mathrm{d}x-x\mathrm{d}y}{3x^2-2xy+3y^2} du(x,y)=3x2−2xy+3y2ydx−xdy,则 u ( x , y ) = _ _ _ _ _ _ . u(x,y)=\_\_\_\_\_\_. u(x,y)=______.
解:
d u ( x , y ) = y d x − x d y 3 x 2 − 2 x y + 3 y 2 \mathrm{d} u(x,y)=\dfrac{y\mathrm{d}x-x\mathrm{d}y}{3x^2-2xy+3y^2} du(x,y)=3x2−2xy+3y2ydx−xdy = 1 y d x − x y 2 d y 3 ( x y ) 2 − 2 x y + 3 =\dfrac{\dfrac{1}{y}\mathrm{d}x-\dfrac{x}{y^2}\mathrm{d}y}{3(\dfrac{x}{y})^2-2\dfrac{x}{y}+3} =3(yx)2−2yx+3y1dx−y2xdy = d ( x y ) 3 ( x y ) 2 − 2 x y + 3 =\dfrac{\mathrm{d}(\dfrac{x}{y})}{3(\dfrac{x}{y})^2-2\dfrac{x}{y}+3} =3(yx)2−2yx+3d(yx) = d ( x y − 1 3 ) 3 ( x y − 1 3 ) 2 + 8 3 =\dfrac{\mathrm{d}(\dfrac{x}{y}-\dfrac{1}{3})}{3(\dfrac{x}{y}-\dfrac{1}{3})^2+\dfrac{8}{3}} =3(yx−31)2+38d(yx−31) = 1 2 2 d ( 3 x 2 2 y − 1 2 2 ) ( 3 x 2 2 y − 1 2 2 ) 2 + 1 =\dfrac{1}{2\sqrt{2}}\dfrac{\mathrm{d}(\frac{3x}{2\sqrt{2}y}-\frac{1}{2\sqrt{2}})}{(\frac{3x}{2\sqrt{2}y}-\frac{1}{2\sqrt{2}})^2+1} =22 1(22 y3x−22 1)2+1d(22 y3x−22 1) = 1 2 2 arctan ( 3 x 2 2 y − 1 2 2 ) + C =\dfrac{1}{2\sqrt{2}}\arctan(\frac{3x}{2\sqrt{2}y}-\frac{1}{2\sqrt{2}})+C =22 1arctan(22 y3x−22 1)+C
设 a , b , c , μ > 0 a,b,c,\mu > 0 a,b,c,μ>0, 曲面 x y z = μ xyz=\mu xyz=μ与曲面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1 相切,则 μ = _ _ _ _ _ _ . \mu=\_\_\_\_\_\_. μ=______.
解:
曲面 x y z = μ xyz=\mu xyz=μ上任一点 P P P切平面的法向量为: ( y z , x z , x y ) ∣ P (yz,xz,xy)|_P (yz,xz,xy)∣P
曲面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1上任一点 P P P切平面的法向量为: ( 2 x a 2 , 2 y b 2 , 2 z c 2 ) ∣ P (\frac{2x}{a^2},\frac{2y}{b^2},\frac{2z}{c^2})|_P (a22x,b22y,c22z)∣P
不妨设两曲面的切点为 Q ( x 0 , y 0 , z 0 ) Q(x_0,y_0,z_0) Q(x0,y0,z0),则有在Q点处,曲面 x y z = μ xyz=\mu xyz=μ和曲面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1的法平面的切向量平行,也就是:
y 0 z 0 = λ 2 x 0 a 2 , x 0 z 0 = λ 2 y 0 b 2 , x 0 y 0 = λ 2 z 0 c 2 y_0z_0=\lambda\dfrac{2x_0}{a^2},x_0z_0=\lambda\dfrac{2y_0}{b^2},x_0y_0=\lambda\dfrac{2z_0}{c^2} y0z0=λa22x0,x0z0=λb22y0,x0y0=λc22z0
又因为Q在曲面 x y z = μ xyz=\mu xyz=μ上,因此有 x 0 y 0 z 0 = μ x_0y_0z_0=\mu x0y0z0=μ
将 x 0 y 0 z 0 = μ x_0y_0z_0=\mu x0y0z0=μ代入 y 0 z 0 = λ 2 x 0 a 2 , x 0 z 0 = λ 2 y 0 b 2 , x 0 y 0 = λ 2 z 0 c 2 y_0z_0=\lambda\dfrac{2x_0}{a^2},x_0z_0=\lambda\dfrac{2y_0}{b^2},x_0y_0=\lambda\dfrac{2z_0}{c^2} y0z0=λa22x0,x0z0=λb22y0,x0y0=λc22z0,得到:
μ x 0 = λ 2 x 0 a 2 , μ y 0 = λ 2 y 0 b 2 , μ z 0 = λ 2 z 0 c 2 \dfrac{\mu}{x_0}=\lambda\dfrac{2x_0}{a^2},\dfrac{\mu}{y_0}=\lambda\dfrac{2y_0}{b^2},\dfrac{\mu}{z_0}=\lambda\dfrac{2z_0}{c^2} x0μ=λa22x0,y0μ=λb22y0,z0μ=λc22z0
也就是: μ = λ 2 x 0 2 a 2 , μ = λ 2 y 0 2 b 2 , μ = λ 2 z 0 2 c 2 \mu=\lambda\dfrac{2x_0^2}{a^2},\mu=\lambda\dfrac{2y_0^2}{b^2},\mu=\lambda\dfrac{2z_0^2}{c^2} μ=λa22x02,μ=λb22y02,μ=λc22z02
将上面三个式子相乘,得到: μ 3 = λ 3 8 x 0 2 y 0 2 z 0 2 a 2 b 2 c 2 \mu^3=\lambda^3\dfrac{8x_0^2y_0^2z_0^2}{a^2b^2c^2} μ3=λ3a2b2c28x02y02z02
由于 x 0 y 0 z 0 = μ x_0y_0z_0=\mu x0y0z0=μ,因此代入上式有: μ = λ 3 8 a 2 b 2 c 2 \mu=\lambda^3\dfrac{8}{a^2b^2c^2} μ=λ3a2b2c28
又因为Q在曲面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1上,因此有 x 0 2 a 2 + y 0 2 b 2 + z 0 2 c 2 = 1 \frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}+\frac{z_0^2}{c^2}=1 a2x02+b2y02+c2z02=1
所以将之前 μ = λ 2 x 0 2 a 2 , μ = λ 2 y 0 2 b 2 , μ = λ 2 z 0 2 c 2 \mu=\lambda\dfrac{2x_0^2}{a^2},\mu=\lambda\dfrac{2y_0^2}{b^2},\mu=\lambda\dfrac{2z_0^2}{c^2} μ=λa22x02,μ=λb22y02,μ=λc22z02三个式子相加,得到: 3 μ = 2 λ ( x 0 2 a 2 + y 0 2 b 2 + z 0 2 c 2 ) = 2 λ 3\mu=2\lambda(\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}+\frac{z_0^2}{c^2})=2\lambda 3μ=2λ(a2x02+b2y02+c2z02)=2λ
因此有 μ = ( 3 μ 2 ) 3 8 a 2 b 2 c 2 \mu=(\dfrac{3\mu}{2})^3\dfrac{8}{a^2b^2c^2} μ=(23μ)3a2b2c28 也就是 μ = 27 μ 3 8 8 a 2 b 2 c 2 = 27 μ 3 a 2 b 2 c 2 \mu=\dfrac{27\mu^3}{8}\dfrac{8}{a^2b^2c^2}=\dfrac{27\mu^3}{a^2b^2c^2} μ=827μ3a2b2c28=a2b2c227μ3 因为 a , b , c , μ > 0 a,b,c,\mu > 0 a,b,c,μ>0, 因此 μ = a b c 3 3 \mu=\dfrac{abc}{3\sqrt{3}} μ=33 abc
本题主要考察三重积分的概念与计算。
解:
对该三重积分进行球坐标变换,令 x = ρ sin φ cos θ , y = ρ sin φ sin θ , z = ρ cos φ x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi x=ρsinφcosθ,y=ρsinφsinθ,z=ρcosφ.由于要计算在第一卦限范围内的三重积分,因此 φ ∈ [ 0 , π 2 ] , θ ∈ [ 0 , π 2 ] \varphi \in [0,\frac{\pi}{2}],\theta \in[0,\frac{\pi}{2}] φ∈[0,2π],θ∈[0,2π],则曲面方程 ( x 2 + y 2 + z 2 ) 2 = 2 x y (x^2+y^2+z^2)^2=2xy (x2+y2+z2)2=2xy在球坐标变换后变为 ρ 2 = 2 sin 2 φ sin θ cos θ \rho^2=2\sin^2\varphi\sin\theta\cos\theta ρ2=2sin2φsinθcosθ,因此如果先枚举 φ \varphi φ和 θ \theta θ,则 ρ ∈ [ 0 , 2 sin 2 φ sin θ cos θ ] \rho \in[0,\sqrt{2\sin^2\varphi\sin\theta\cos\theta}] ρ∈[0,2sin2φsinθcosθ ],因此得到:
∭ Ω x y z x 2 + y 2 d x d y d z \iiint_{\Omega}\dfrac{xyz}{x^2+y^2}\mathrm{d}x\mathrm{d}y\mathrm{d}z ∭Ωx2+y2xyzdxdydz = ∫ 0 π 2 sin φ d φ ∫ 0 π 2 d θ ∫ 0 2 sin 2 φ sin θ cos θ ρ 2 d ρ ρ 3 sin 2 φ cos φ sin θ cos θ ρ 2 sin 2 φ =\int_{0}^{\frac{\pi}{2}}\sin\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\mathrm{d}\theta\int_{0}^{\sqrt{2\sin^2\varphi\sin\theta\cos\theta}}\rho^2\mathrm{d}\rho\dfrac{\rho^3\sin^2\varphi\cos\varphi\sin\theta\cos\theta}{\rho^2\sin^2\varphi} =∫02πsinφdφ∫02πdθ∫02sin2φsinθcosθ ρ2dρρ2sin2φρ3sin2φcosφsinθcosθ = ∫ 0 π 2 sin φ d φ ∫ 0 π 2 d θ ∫ 0 2 sin 2 φ sin θ cos θ ρ 3 cos φ sin θ cos θ d ρ =\int_{0}^{\frac{\pi}{2}}\sin\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\mathrm{d}\theta\int_{0}^{\sqrt{2\sin^2\varphi\sin\theta\cos\theta}}\rho^3\cos\varphi\sin\theta\cos\theta\mathrm{d}\rho =∫02πsinφdφ∫02πdθ∫02sin2φsinθcosθ ρ3cosφsinθcosθdρ = ∫ 0 π 2 sin φ cos φ d φ ∫ 0 π 2 sin θ cos θ d θ ∫ 0 2 sin 2 φ sin θ cos θ ρ 3 d ρ =\int_{0}^{\frac{\pi}{2}}\sin\varphi\cos\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\sin\theta\cos\theta\mathrm{d}\theta\int_{0}^{\sqrt{2\sin^2\varphi\sin\theta\cos\theta}}\rho^3\mathrm{d}\rho =∫02πsinφcosφdφ∫02πsinθcosθdθ∫02sin2φsinθcosθ ρ3dρ = ∫ 0 π 2 sin φ cos φ d φ ∫ 0 π 2 sin θ cos θ d θ ( 1 4 ρ 4 ) ∣ 0 2 sin 2 φ sin θ cos θ =\int_{0}^{\frac{\pi}{2}}\sin\varphi\cos\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\sin\theta\cos\theta\mathrm{d}\theta(\frac{1}{4}\rho^4)\big|_{0}^{\sqrt{2\sin^2\varphi\sin\theta\cos\theta}} =∫02πsinφcosφdφ∫02πsinθcosθdθ(41ρ4)∣∣02sin2φsinθcosθ = ∫ 0 π 2 sin φ cos φ d φ ∫ 0 π 2 sin θ cos θ d θ sin 4 φ sin 2 θ cos 2 θ =\int_{0}^{\frac{\pi}{2}}\sin\varphi\cos\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\sin\theta\cos\theta\mathrm{d}\theta\sin^4\varphi\sin^2\theta\cos^2\theta =∫02πsinφcosφdφ∫02πsinθcosθdθsin4φsin2θcos2θ = ∫ 0 π 2 sin 5 φ cos φ d φ ∫ 0 π 2 sin 3 θ cos 3 θ d θ =\int_{0}^{\frac{\pi}{2}}\sin^5\varphi\cos\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\sin^3\theta\cos^3\theta\mathrm{d}\theta =∫02πsin5φcosφdφ∫02πsin3θcos3θdθ = ∫ 0 π 2 sin 5 φ d ( sin φ ) ∫ 0 π 2 sin 3 θ cos 3 θ d θ =\int_{0}^{\frac{\pi}{2}}\sin^5\varphi\mathrm{d}(\sin\varphi)\int_0^{\frac{\pi}{2}}\sin^3\theta\cos^3\theta\mathrm{d}\theta =∫02πsin5φd(sinφ)∫02πsin3θcos3θdθ = 1 6 ( sin 6 φ ) ∣ 0 π 2 ∫ 0 π 2 sin 3 θ cos 3 θ d θ =\frac{1}{6}(\sin^6\varphi)\big|_{0}^{\frac{\pi}{2}}\int_0^{\frac{\pi}{2}}\sin^3\theta\cos^3\theta\mathrm{d}\theta =61(sin6φ)∣∣02π∫02πsin3θcos3θdθ = 1 6 ∫ 0 π 2 sin 3 θ cos 2 θ d ( sin θ ) =\frac{1}{6}\int_0^{\frac{\pi}{2}}\sin^3\theta\cos^2\theta\mathrm{d}(\sin\theta) =61∫02πsin3θcos2θd(sinθ) = 1 6 ∫ 0 π 2 sin 3 θ ( 1 − sin 2 θ ) d ( sin θ ) =\frac{1}{6}\int_0^{\frac{\pi}{2}}\sin^3\theta(1-\sin^2\theta)\mathrm{d}(\sin\theta) =61∫02πsin3θ(1−sin2θ)d(sinθ) = 1 6 ∫ 0 π 2 sin 3 θ − sin 5 θ d ( sin θ ) =\frac{1}{6}\int_0^{\frac{\pi}{2}}\sin^3\theta-\sin^5\theta\mathrm{d}(\sin\theta) =61∫02πsin3θ−sin5θd(sinθ) = 1 6 ( 1 4 sin 4 θ − 1 6 sin 6 θ ) ∣ 0 π 2 =\frac{1}{6}(\frac{1}{4}\sin^4\theta-\frac{1}{6}\sin^6\theta)\big|_0^{\frac{\pi}{2}} =61(41sin4θ−61sin6θ)∣∣02π = 1 6 ( 1 4 − 1 6 ) =\frac{1}{6}(\frac{1}{4}-\frac{1}{6}) =61(41−61) = 1 72 =\frac{1}{72} =721
本题主要考察微分中值定理。
证明函数恒等于0,可以证明函数在某个区间内的最大值等于0。证明函数在某个区间的最大值等于0,可以通过证明函数在某个区间内最大值的绝对值小于等于该绝对值乘以一个小于1的比例系数。
证明函数在区间 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上满足某个性质,也可以将区间 [ 0 , + ∞ ) [0,+\infin) [0,+∞)分为若干段,分别证明或递推证明在这若干段区间上都满足性质。
证明:
设 x 0 ∈ [ 0 , 1 2 A ] , 使 得 ∣ f ( x 0 ) ∣ = max { ∣ f ( x ) ∣ ∣ x ∈ [ 0 , 1 2 A ] } x_0 \in [0,\frac{1}{2A}],使得|f(x_0)|=\max \left \{ |f(x)| \big| x \in [0,\frac{1}{2A}]\right\} x0∈[0,2A1],使得∣f(x0)∣=max{∣f(x)∣∣∣x∈[0,2A1]}
因为 f ( x ) f(x) f(x)在 [ 0 , 1 2 A ] [0,\frac{1}{2A}] [0,2A1]可微,因此 f ( x ) f(x) f(x)在 [ 0 , 1 2 A ] [0,\frac{1}{2A}] [0,2A1]内连续.
因为 f ( x ) f(x) f(x)在 ( 0 , 1 2 A ) (0,\frac{1}{2A}) (0,2A1)可微,因此 f ( x ) f(x) f(x)在 ( 0 , 1 2 A ) (0,\frac{1}{2A}) (0,2A1)内也可导.
由于 f ( x ) f(x) f(x)在 [ 0 , 1 2 A ] [0,\frac{1}{2A}] [0,2A1]内连续,在 ( 0 , 1 2 A ) (0,\frac{1}{2A}) (0,2A1)内可导,因此根据拉格朗日中值定理, ∃ ξ ∈ ( 0 , 1 2 A ) \exists \xi \in (0,\frac{1}{2A}) ∃ξ∈(0,2A1),使得:
f ( x 0 ) − f ( 0 ) = f ′ ( ξ ) ( x 0 − 0 ) f(x_0)-f(0)=f'(\xi)(x_0-0) f(x0)−f(0)=f′(ξ)(x0−0)
因为 f ( 0 ) = 0 f(0)=0 f(0)=0,因此有
f ( x 0 ) = f ′ ( ξ ) x 0 f(x_0)=f'(\xi)x_0 f(x0)=f′(ξ)x0
因此
∣ f ( x 0 ) ∣ = ∣ f ′ ( ξ ) x 0 ∣ = ∣ f ′ ( ξ ) ∣ x 0 ≤ A ∣ f ( ξ ) ∣ x 0 ≤ A ∣ f ( x 0 ) ∣ x 0 ≤ A ∣ f ( x 0 ) ∣ 1 2 A = 1 2 ∣ f ( x 0 ) ∣ |f(x_0)|=|f'(\xi)x_0|=|f'(\xi)|x_0\le A|f(\xi)|x_0 \le A|f(x_0)|x_0\le A|f(x_0)|\frac{1}{2A}=\frac{1}{2}|f(x_0)| ∣f(x0)∣=∣f′(ξ)x0∣=∣f′(ξ)∣x0≤A∣f(ξ)∣x0≤A∣f(x0)∣x0≤A∣f(x0)∣2A1=21∣f(x0)∣
也就是 ∣ f ( x 0 ) ∣ ≤ 1 2 ∣ f ( x 0 ) ∣ |f(x_0)| \le \frac{1}{2}|f(x_0)| ∣f(x0)∣≤21∣f(x0)∣
所以 1 2 ∣ f ( x 0 ) ∣ ≤ 0 \frac{1}{2}|f(x_0)| \le 0 21∣f(x0)∣≤0
又因为 ∣ f ( x 0 ) ∣ ≥ 0 |f(x_0)| \ge 0 ∣f(x0)∣≥0
因此 ∣ f ( x 0 ) ∣ = 0 |f(x_0)| = 0 ∣f(x0)∣=0
因此 ∀ x ∈ [ 0 , 1 2 A ] , f ( x ) ≡ 0 \forall x \in [0,\frac{1}{2A}], f(x) \equiv 0 ∀x∈[0,2A1],f(x)≡0
递推可得,对于所有的 x ∈ [ k 2 A , k + 1 2 A ] , k = 0 , 1 , 2...... x \in [\frac{k}{2A},\frac{k+1}{2A}],k=0,1,2...... x∈[2Ak,2Ak+1],k=0,1,2......,都有 f ( x ) ≡ 0 f(x) \equiv 0 f(x)≡0
因此在 ( 0 , + ∞ ) (0,+\infin) (0,+∞)上有 f ( x ) ≡ 0 f(x)\equiv0 f(x)≡0
设球面 Σ : x 2 + y 2 + z 2 = 1 \Sigma:x^2+y^2+z^2=1 Σ:x2+y2+z2=1,由球面的参数方程 x = sin θ cos ϕ , y = sin θ sin ϕ , z = cos θ x=\sin\theta\cos\phi,y=\sin\theta\sin\phi,z=\cos\theta x=sinθcosϕ,y=sinθsinϕ,z=cosθ
知 E = x θ 2 + y θ 2 + z θ 2 = ( cos θ cos ϕ ) 2 + ( cos θ sin ϕ ) 2 + ( − sin θ ) 2 = cos 2 θ cos 2 ϕ + cos 2 θ sin 2 ϕ + sin 2 θ = cos 2 θ ( cos 2 ϕ + sin 2 ϕ ) + sin 2 θ = cos 2 θ + sin 2 θ = 1 E=x_{\theta}^2+y_{\theta}^2+z_{\theta}^2=(\cos\theta\cos\phi)^2+(\cos\theta\sin\phi)^2+(-\sin\theta)^2=\cos^2\theta\cos^2\phi+\cos^2\theta\sin^2\phi+\sin^2\theta=\cos^2\theta(\cos^2\phi+\sin^2\phi)+\sin^2\theta=\cos^2\theta+\sin^2\theta=1 E=xθ2+yθ2+zθ2=(cosθcosϕ)2+(cosθsinϕ)2+(−sinθ)2=cos2θcos2ϕ+cos2θsin2ϕ+sin2θ=cos2θ(cos2ϕ+sin2ϕ)+sin2θ=cos2θ+sin2θ=1 F = x θ x ϕ + y θ y ϕ + z θ z ϕ = ( cos θ cos ϕ ) ( − sin θ sin ϕ ) + ( cos θ sin ϕ ) ( sin θ cos ϕ ) + ( − sin θ ) ⋅ 0 = − sin θ cos θ sin ϕ cos ϕ + sin θ cos θ sin ϕ cos ϕ = 0 F=x_{\theta}x_{\phi}+y_{\theta}y_{\phi}+z_{\theta}z_{\phi}=(\cos\theta\cos\phi)(-\sin\theta\sin\phi)+(\cos\theta\sin\phi)(\sin\theta\cos\phi)+(-\sin\theta)\cdot0=-\sin\theta\cos\theta\sin\phi\cos\phi+\sin\theta\cos\theta\sin\phi\cos\phi=0 F=xθxϕ+yθyϕ+zθzϕ=(cosθcosϕ)(−sinθsinϕ)+(cosθsinϕ)(sinθcosϕ)+(−sinθ)⋅0=−sinθcosθsinϕcosϕ+sinθcosθsinϕcosϕ=0 G = x ϕ 2 + y ϕ 2 + z ϕ 2 = ( − sin θ sin ϕ ) 2 + ( sin θ cos ϕ ) 2 + 0 2 = sin 2 θ sin 2 ϕ + sin 2 θ cos 2 ϕ = sin 2 θ ( sin 2 ϕ + cos 2 ϕ ) = sin 2 θ G=x_{\phi}^2+y_{\phi}^2+z_{\phi}^2=(-\sin\theta\sin\phi)^2+(\sin\theta\cos\phi)^2+0^2=\sin^2\theta\sin^2\phi+\sin^2\theta\cos^2\phi=\sin^2\theta(\sin^2\phi+\cos^2\phi)=\sin^2\theta G=xϕ2+yϕ2+zϕ2=(−sinθsinϕ)2+(sinθcosϕ)2+02=sin2θsin2ϕ+sin2θcos2ϕ=sin2θ(sin2ϕ+cos2ϕ)=sin2θ
因此 d S = E G − F 2 d θ d ϕ = sin 2 θ d θ d ϕ = ∣ sin θ ∣ d θ d ϕ dS=\sqrt{EG-F^2}\mathrm{d}\theta\mathrm{d}\phi=\sqrt{\sin^2\theta}\mathrm{d}\theta\mathrm{d}\phi=\left|\sin\theta\right|\mathrm{d}\theta\mathrm{d}\phi dS=EG−F2 dθdϕ=sin2θ dθdϕ=∣sinθ∣dθdϕ
由于上面的球坐标变换中, θ ∈ [ 0 , π ] \theta \in [0,\pi] θ∈[0,π],因此 sin θ ≥ 0 \sin\theta\ge 0 sinθ≥0,于是 d S = sin θ d θ d ϕ dS=\sin\theta\mathrm{d}\theta\mathrm{d}\phi dS=sinθdθdϕ
I = ∫ 0 2 π d ϕ ∫ 0 π e sin θ ( cos ϕ − sin ϕ ) sin θ d θ I=\int_0^{2\pi}\mathrm{d}\phi \int_0^{\pi} e^{\sin \theta(\cos \phi - \sin \phi)}\sin \theta \mathrm{d} \theta I=∫02πdϕ∫0πesinθ(cosϕ−sinϕ)sinθdθ = ∬ Σ e x − y d S =\iint_{\Sigma}e^{x-y}\mathrm{d}S =∬Σex−ydS
之后有两种处理方法.
做坐标变换 x = u + v 2 , y = u − v 2 , z = w x=\frac{u+v}{\sqrt{2}},y=\frac{u-v}{\sqrt{2}},z=w x=2 u+v,y=2 u−v,z=w 则 Σ : x 2 + y 2 + z 2 = 1 \Sigma:x^2+y^2+z^2=1 Σ:x2+y2+z2=1变换为 Σ ′ : u 2 + v 2 + w 2 = 1 \Sigma':u^2+v^2+w^2=1 Σ′:u2+v2+w2=1
∬ Σ e x − y d S = ∬ Σ ′ e 2 u ∣ J ∣ d S \iint_{\Sigma}e^{x-y}\mathrm{d}S=\iint_{\Sigma'}e^{\sqrt{2}u}\left|J\right|\mathrm{d}S ∬Σex−ydS=∬Σ′e2 u∣J∣dS
其中, J = D ( x , y , z ) D ( u , v , w ) = ∣ x u x v x w y u y v y w z u z v z w ∣ = ∣ 1 2 1 2 0 1 2 − 1 2 0 0 0 1 ∣ = − 1 J=\dfrac{\mathrm{D}(x,y,z)}{\mathrm{D}(u,v,w)}=\begin{vmatrix} x_u& x_v & x_w\\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix}=\begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{vmatrix}=-1 J=D(u,v,w)D(x,y,z)=∣∣∣∣∣∣xuyuzuxvyvzvxwywzw∣∣∣∣∣∣=∣∣∣∣∣∣2 12 102 12 −10001∣∣∣∣∣∣=−1 因此 ∬ Σ ′ e 2 u ∣ J ∣ d S = ∬ Σ ′ e 2 u d S \iint_{\Sigma'}e^{\sqrt{2}u}\left|J\right|\mathrm{d}S=\iint_{\Sigma'}e^{\sqrt{2}u}\mathrm{d}S ∬Σ′e2 u∣J∣dS=∬Σ′e2 udS
因为 Σ ′ : u 2 + v 2 + w 2 = 1 \Sigma':u^2+v^2+w^2=1 Σ′:u2+v2+w2=1关于 u , v , w u,v,w u,v,w具有轮换对称性,因此有 ∬ Σ ′ e 2 u d S = ∬ Σ ′ e 2 w d S \iint_{\Sigma'}e^{\sqrt{2}u}\mathrm{d}S=\iint_{\Sigma'}e^{\sqrt{2}w}\mathrm{d}S ∬Σ′e2 udS=∬Σ′e2 wdS
再做球坐标变换 u = sin θ cos ϕ , v = sin θ sin ϕ , w = cos θ u=\sin\theta\cos\phi,v=\sin\theta\sin\phi,w=\cos\theta u=sinθcosϕ,v=sinθsinϕ,w=cosθ,因此有 ∬ Σ ′ e 2 w d S = ∫ 0 2 π d ϕ ∫ 0 π e 2 cos θ sin θ d θ \iint_{\Sigma'}e^{\sqrt{2}w}\mathrm{d}S=\int_0^{2\pi}\mathrm{d}\phi\int_0^{\pi}e^{\sqrt{2}\cos\theta}\sin\theta\mathrm{d}\theta ∬Σ′e2 wdS=∫02πdϕ∫0πe2 cosθsinθdθ = − 1 2 ∫ 0 2 π d ϕ ∫ 0 π e 2 cos θ d ( 2 cos θ ) =\frac{-1}{\sqrt{2}}\int_0^{2\pi}\mathrm{d}\phi\int_0^{\pi}e^{\sqrt{2}\cos\theta}\mathrm{d}(\sqrt{2}\cos\theta) =2 −1∫02πdϕ∫0πe2 cosθd(2 cosθ) = − 1 2 ∫ 0 2 π d ϕ ∫ 0 π d ( e 2 cos θ ) =\frac{-1}{\sqrt{2}}\int_0^{2\pi}\mathrm{d}\phi\int_0^{\pi}\mathrm{d}(e^{\sqrt{2}\cos\theta}) =2 −1∫02πdϕ∫0πd(e2 cosθ) = − 1 2 ∫ 0 2 π d ϕ ( e 2 cos θ ) ∣ 0 π =\frac{-1}{\sqrt{2}}\int_0^{2\pi}\mathrm{d}\phi(e^{\sqrt{2}\cos\theta})\big|_0^{\pi} =2 −1∫02πdϕ(e2 cosθ)∣∣0π = − 1 2 ∫ 0 2 π d ϕ ( e − 2 − e 2 ) =\frac{-1}{\sqrt{2}}\int_0^{2\pi}\mathrm{d}\phi(e^{-\sqrt{2}}-e^{\sqrt{2}}) =2 −1∫02πdϕ(e−2 −e2 ) = − 1 2 ( 2 π ) ( e − 2 − e 2 ) =\frac{-1}{\sqrt{2}}(2\pi)(e^{-\sqrt{2}}-e^{\sqrt{2}}) =2 −1(2π)(e−2 −e2 ) = 2 π ( e 2 − e − 2 ) =\sqrt{2}\pi(e^{\sqrt{2}}-e^{-\sqrt{2}}) =2 π(e2 −e−2 )
设平面 P t : x − y 2 = t , − 1 ≤ t ≤ 1 P_t:\frac{x-y}{\sqrt{2}}=t,-1\le t \le1 Pt:2 x−y=t,−1≤t≤1,其中t为平面 P t P_t Pt被球面截下部分中心到原点距离.用平面 P t P_t Pt分割球面 Σ \Sigma Σ,球面在平面 P t , P t + d t P_t,P_{t+\mathrm{d}t} Pt,Pt+dt之间的部分形如圆台外表面状,记为 Σ t , t + d t \Sigma_{t,t+\mathrm{d}t} Σt,t+dt,被积函数在该微元上为 e x − y = e 2 t e^{x-y}=e^{\sqrt{2}t} ex−y=e2 t.
由于 Σ t , t + d t \Sigma_{t,t+\mathrm{d}t} Σt,t+dt的半径为 r t = 1 − t 2 r_t=\sqrt{1-t^2} rt=1−t2 ,半径的增长率为: d ( 1 − t 2 ) = − t 1 − t 2 d t \mathrm{d}(\sqrt{1-t^2})=\frac{-t}{\sqrt{1-t^2}}\mathrm{d}t d(1−t2 )=1−t2 −tdt
也就是 Σ t , t + d t \Sigma_{t,t+\mathrm{d}t} Σt,t+dt上下底面半径之差.
记圆台外表面斜高为 h t h_t ht,则由微元法及勾股定理,得 ( d t ) 2 + ( d 1 − t 2 ) 2 = h t 2 (\mathrm{d}t)^2+(\mathrm{d}\sqrt{1-t^2})^2=h_t^2 (dt)2+(d1−t2 )2=ht2,化简得到 h t = d t 1 − t 2 h_t=\dfrac{\mathrm{d}t}{\sqrt{1-t^2}} ht=1−t2 dt
因此 Σ t , t + d t \Sigma_{t,t+\mathrm{d}t} Σt,t+dt的面积为 d S = 2 π r t h t = 2 π 1 − t 2 d t 1 − t 2 = 2 π d t \mathrm{d}S=2\pi r_th_t=2\pi \sqrt{1-t^2}\dfrac{\mathrm{d}t}{\sqrt{1-t^2}}=2\pi\mathrm{d}t dS=2πrtht=2π1−t2 1−t2 dt=2πdt
因此有 I = ∬ Σ e x − y d S = ∫ − 1 1 e 2 t 2 π d t I=\iint_{\Sigma}e^{x-y}\mathrm{d}S=\int_{-1}^{1}e^{\sqrt{2}t}2\pi\mathrm{d}t I=∬Σex−ydS=∫−11e2 t2πdt = 2 π ∫ − 1 1 e 2 t d ( 2 t ) =\sqrt{2}\pi\int_{-1}^{1}e^{\sqrt{2}t}\mathrm{d}(\sqrt{2}t) =2 π∫−11e2 td(2 t) = 2 π ∫ − 1 1 d ( e 2 t ) =\sqrt{2}\pi\int_{-1}^{1}\mathrm{d}(e^{\sqrt{2}t}) =2 π∫−11d(e2 t) = 2 π ( e 2 t ) ∣ − 1 1 =\sqrt{2}\pi (e^{\sqrt{2}t})\big|_{-1}^{1} =2 π(e2 t)∣∣−11 = 2 π ( e 2 − e − 2 ) =\sqrt{2}\pi(e^{\sqrt{2}}-e^{-\sqrt{2}}) =2 π(e2 −e−2 )
证明:由于 f ( x ) f(x) f(x)为仅有正实根的多项式函数,不妨设 f ( x ) f(x) f(x)的全部根的取值为 0 < a 1 < a 2 < . . . < a k 0<a_1<a_2<...<a_k 0<a1<a2<...<ak,这样有 f ( x ) = A ∏ i = 1 k ( x − a i ) r i f(x)=A\prod_{i=1}^{k}(x-a_i)^{r_i} f(x)=Ai=1∏k(x−ai)ri 其中 r i r_i ri为对应根 a i a_i ai的重数,满足 r i ∈ Z r_i \in Z ri∈Z且 r i ≥ 1 r_i \ge 1 ri≥1
f ′ ( x ) = A ∑ j = 1 k ( r j ( x − a j ) − 1 ∏ i = 1 k ( x − a i ) r i ) f'(x)=A\sum_{j=1}^{k}(r_j(x-a_j)^{-1}\prod_{i=1}^{k}(x-a_i)^{r_i}) f′(x)=Aj=1∑k(rj(x−aj)−1i=1∏k(x−ai)ri)
因此 f ′ ( x ) f ( x ) = A ∑ j = 1 k ( r j ( x − a j ) − 1 ∏ i = 1 k ( x − a i ) r i ) A ∏ i = 1 k ( x − a i ) r i \dfrac{f'(x)}{f(x)}=\dfrac{A\sum_{j=1}^{k}(r_j(x-a_j)^{-1}\prod_{i=1}^{k}(x-a_i)^{r_i})}{A\prod_{i=1}^{k}(x-a_i)^{r_i}} f(x)f′(x)=A∏i=1k(x−ai)riA∑j=1k(rj(x−aj)−1∏i=1k(x−ai)ri) = ∑ j = 1 k r j x − a j =\sum_{j=1}^{k}\dfrac{r_j}{x-a_j} =j=1∑kx−ajrj = − ∑ j = 1 k r j a j − x =-\sum_{j=1}^{k}\dfrac{r_j}{a_j-x} =−j=1∑kaj−xrj = − ∑ j = 1 k r j a j − x =-\sum_{j=1}^{k}\dfrac{r_j}{a_j-x} =−j=1∑kaj−xrj = − ∑ j = 1 k r j a j 1 1 − x a j =-\sum_{j=1}^{k}\dfrac{r_j}{a_j}\dfrac{1}{1-\frac{x}{a_j}} =−j=1∑kajrj1−ajx1 = − ∑ j = 1 k r j a j ∑ n = 0 ∞ ( x a j ) n =-\sum_{j=1}^{k}\dfrac{r_j}{a_j}\sum_{n=0}^{\infin}(\frac{x}{a_j})^n =−j=1∑kajrjn=0∑∞(ajx)n = − ∑ j = 1 k r j a j ∑ n = 0 ∞ x n a j n =-\sum_{j=1}^{k}\dfrac{r_j}{a_j}\sum_{n=0}^{\infin}\frac{x^n}{a_j^n} =−j=1∑kajrjn=0∑∞ajnxn = − ∑ n = 0 ∞ x n ∑ j = 1 k r j a j n + 1 =-\sum_{n=0}^{\infin}x^n\sum_{j=1}^{k}\dfrac{r_j}{a_j^{n+1}} =−n=0∑∞xnj=1∑kajn+1rj
而 f ′ ( x ) f ( x ) = − ∑ n = 0 + ∞ c n x n \dfrac{f'(x)}{f(x)}=-\sum_{n=0}^{+\infin}c_nx^n f(x)f′(x)=−∑n=0+∞cnxn,由幂级数的唯一性知, c n = ∑ j = 1 k r j a j n + 1 > 0 c_n=\sum_{j=1}^{k}\dfrac{r_j}{a_j^{n+1}}>0 cn=∑j=1kajn+1rj>0
c n + 1 c n = ∑ j = 1 k r j a j n + 2 ∑ j = 1 k r j a j n + 1 \dfrac{c_{n+1}}{c_n}=\dfrac{\sum_{j=1}^{k}\dfrac{r_j}{a_j^{n+2}}}{\sum_{j=1}^{k}\dfrac{r_j}{a_j^{n+1}}} cncn+1=∑j=1kajn+1rj∑j=1kajn+2rj = ∑ j = 1 k r j ( a 1 a j ) n + 2 a 1 ∑ j = 1 k r j ( a 1 a j ) n + 1 =\dfrac{\sum_{j=1}^{k}r_j(\dfrac{a_1}{a_j})^{n+2}}{a_1\sum_{j=1}^{k}r_j(\dfrac{a_1}{a_j})^{n+1}} =a1∑j=1krj(aja1)n+1∑j=1krj(aja1)n+2
lim n → ∞ c n + 1 c n = lim n → ∞ ∑ j = 1 k r j ( a 1 a j ) n + 2 a 1 ∑ j = 1 k r j ( a 1 a j ) n + 1 \lim_{n \rightarrow \infin}\dfrac{c_{n+1}}{c_n}=\lim_{n \rightarrow \infin}\dfrac{\sum_{j=1}^{k}r_j(\dfrac{a_1}{a_j})^{n+2}}{a_1\sum_{j=1}^{k}r_j(\dfrac{a_1}{a_j})^{n+1}} n→∞limcncn+1=n→∞lima1∑j=1krj(aja1)n+1∑j=1krj(aja1)n+2 = lim n → ∞ r 1 + ∑ j = 2 k r j ( a 1 a j ) n + 2 a 1 ( r 1 + ∑ j = 2 k r j ( a 1 a j ) n + 1 ) =\lim_{n \rightarrow \infin}\dfrac{r_1+\sum_{j=2}^{k}r_j(\dfrac{a_1}{a_j})^{n+2}}{a_1(r_1+\sum_{j=2}^{k}r_j(\dfrac{a_1}{a_j})^{n+1})} =n→∞lima1(r1+∑j=2krj(aja1)n+1)r1+∑j=2krj(aja1)n+2 = 1 a 1 =\frac{1}{a_1} =a11
而 lim n → ∞ c n n = lim n → ∞ e ln c n n \lim_{n \rightarrow \infin}\sqrt[n]{c_n}=\lim_{n \rightarrow \infin}e^{\frac{\ln c_n}{n}} n→∞limncn =n→∞limenlncn = lim n → ∞ e 1 n ( ln c 1 + ln c 2 c 1 + ln c 3 c 2 + . . . + ln c n c n − 1 ) =\lim_{n \rightarrow \infin}e^{\frac{1}{n}(\ln c_1+\ln \frac{c_2}{c_1}+\ln \frac{c_3}{c_2}+...+\ln \frac{c_n}{c_{n-1}})} =n→∞limen1(lnc1+lnc1c2+lnc2c3+...+lncn−1cn) = e ln 1 a 1 =e^{\ln\frac{1}{a_1}} =elna11 = 1 a 1 =\frac{1}{a_1} =a11
其中, lim n → ∞ 1 n ( ln c 1 + ln c 2 c 1 + ln c 3 c 2 + . . . + ln c n c n − 1 ) = lim n → ∞ ln c n c n − 1 = ln 1 a 1 \lim_{n \rightarrow \infin}\frac{1}{n}(\ln c_1+\ln \frac{c_2}{c_1}+\ln \frac{c_3}{c_2}+...+\ln \frac{c_n}{c_{n-1}})=\lim_{n \rightarrow \infin}\ln \frac{c_n}{c_{n-1}}=\ln\frac{1}{a_1} limn→∞n1(lnc1+lnc1c2+lnc2c3+...+lncn−1cn)=limn→∞lncn−1cn=lna11的具体证明过程可以参考第三届全国大学生数学竞赛初赛(非数学类)第二大题第一小题.
从而有, lim n → ∞ 1 c n n = a 1 \lim_{n \rightarrow \infin}\frac{1}{\sqrt[n]{c_n}}=a_1 limn→∞ncn 1=a1,也就是 f ( x ) f(x) f(x)的最小正根.
证明:
首先有 f ′ ( x ) = 2 [ 1 + f 2 ( x ) ] 2 e − x 2 3 [ 3 + f 2 ( x ) ] > 0 f'(x)=\dfrac{2[1+f^2(x)]^2e^{-x^2}}{3[3+f^2(x)]}>0 f′(x)=3[3+f2(x)]2[1+f2(x)]2e−x2>0,因此f(x)是 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上的严格单调递增函数,故 lim n → ∞ f ( x ) = L \lim_{n \rightarrow \infin}f(x)=L limn→∞f(x)=L(有限或为 + ∞ +\infin +∞),下面证明 L ≠ + ∞ L \neq+\infin L=+∞.
记 y = f ( x ) y=f(x) y=f(x),得到如下的微分方程 d y d x = 2 ( 1 + y 2 ) 2 e − x 2 3 ( 3 + y 2 ) \frac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{2(1+y^2)^2e^{-x^2}}{3(3+y^2)} dxdy=3(3+y2)2(1+y2)2e−x2
这是可以分离变量的微分方程,分离变量得到 3 + y 2 ( 1 + y 2 ) 2 d y = 2 3 e − x 2 d x \dfrac{3+y^2}{(1+y^2)^2}\mathrm{d}y=\frac{2}{3}e^{-x^2}\mathrm{d}x (1+y2)23+y2dy=32e−x2dx
两边积分得到 ∫ 3 + y 2 ( 1 + y 2 ) 2 d y = 2 3 ∫ e − x 2 d x \int\dfrac{3+y^2}{(1+y^2)^2}\mathrm{d}y=\frac{2}{3}\int e^{-x^2}\mathrm{d}x ∫(1+y2)23+y2dy=32∫e−x2dx
其中 ∫ 3 + y 2 ( 1 + y 2 ) 2 d y = ∫ 2 ( 1 + y 2 ) 2 + 1 1 + y 2 d y \int\dfrac{3+y^2}{(1+y^2)^2}\mathrm{d}y=\int\dfrac{2}{(1+y^2)^2}+\dfrac{1}{1+y^2}\mathrm{d}y ∫(1+y2)23+y2dy=∫(1+y2)22+1+y21dy = ∫ 2 ( 1 + y 2 ) 2 d y + ∫ 1 1 + y 2 d y =\int\dfrac{2}{(1+y^2)^2}\mathrm{d}y+\int\dfrac{1}{1+y^2}\mathrm{d}y =∫(1+y2)22dy+∫1+y21dy = ∫ 2 ( 1 + y 2 ) 2 d y + arctan y =\int\dfrac{2}{(1+y^2)^2}\mathrm{d}y+\arctan y =∫(1+y2)22dy+arctany
考虑计算 ∫ 2 ( 1 + y 2 ) 2 d y \int\dfrac{2}{(1+y^2)^2}\mathrm{d}y ∫(1+y2)22dy,令 y = tan t y=\tan t y=tant,则有 ∫ 2 ( 1 + y 2 ) 2 d y = ∫ 2 ( 1 + tan 2 t ) 2 sec 2 t d t \int\dfrac{2}{(1+y^2)^2}\mathrm{d}y=\int\dfrac{2}{(1+\tan^2t)^2}\sec^2t\mathrm{d} t ∫(1+y2)22dy=∫(1+tan2t)22sec2tdt = ∫ 2 ( sec 2 t ) 2 sec 2 t d t =\int\dfrac{2}{(\sec^2t)^2}\sec^2t\mathrm{d} t =∫(sec2t)22sec2tdt = ∫ 2 sec 2 t d t =\int\dfrac{2}{\sec^2t}\mathrm{d} t =∫sec2t2dt = ∫ 2 cos 2 t d t =\int2\cos^2t\mathrm{d} t =∫2cos2tdt = ∫ 1 + cos ( 2 t ) d t =\int1+\cos(2t)\mathrm{d} t =∫1+cos(2t)dt = t + sin ( 2 t ) 2 + C =t+\frac{\sin(2t)}{2}+C =t+2sin(2t)+C = t + sin t cos t + C =t+\sin t\cos t+C =t+sintcost+C = arctan y + y 1 + y 2 + C =\arctan y+\frac{y}{1+y^2}+C =arctany+1+y2y+C
因此有 ∫ 3 + y 2 ( 1 + y 2 ) 2 d y = ∫ 2 ( 1 + y 2 ) 2 d y + arctan y \int\dfrac{3+y^2}{(1+y^2)^2}\mathrm{d}y=\int\dfrac{2}{(1+y^2)^2}\mathrm{d}y+\arctan y ∫(1+y2)23+y2dy=∫(1+y2)22dy+arctany = ( arctan y + y 1 + y 2 + C ) + arctan y =(\arctan y+\frac{y}{1+y^2}+C)+\arctan y =(arctany+1+y2y+C)+arctany = 2 arctan y + y 1 + y 2 + C =2\arctan y+\frac{y}{1+y^2}+C =2arctany+1+y2y+C
代入原微分方程,有 2 arctan y + y 1 + y 2 = 2 3 ∫ e − x 2 d x 2\arctan y+\frac{y}{1+y^2}=\frac{2}{3}\int e^{-x^2}\mathrm{d}x 2arctany+1+y2y=32∫e−x2dx
将右边也积出来(右边的原函数不是初等函数),得到 2 arctan y + y 1 + y 2 = 2 3 ∫ 0 x e − t 2 d t + C 2\arctan y+\frac{y}{1+y^2}=\frac{2}{3}\int_0^x e^{-t^2}\mathrm{d}t+C 2arctany+1+y2y=32∫0xe−t2dt+C
代入 x = 0 x=0 x=0,得到常数 C C C的表达式 C = 2 arctan f ( 0 ) + f ( 0 ) 1 + f 2 ( 0 ) C=2\arctan f(0)+\frac{f(0)}{1+f^2(0)} C=2arctanf(0)+1+f2(0)f(0)
若 L = + ∞ L = + \infin L=+∞,则对 2 arctan y + y 1 + y 2 = 2 3 ∫ 0 x e − t 2 d t + C 2\arctan y+\frac{y}{1+y^2}=\frac{2}{3}\int_0^x e^{-t^2}\mathrm{d}t+C 2arctany+1+y2y=32∫0xe−t2dt+C取 x → + ∞ x \rightarrow + \infin x→+∞的极限,并利用 ∫ 0 + ∞ e − t 2 d t = π 2 \int_0^{+\infin}e^{-t^2}\mathrm{d}t=\frac{\sqrt{\pi}}{2} ∫0+∞e−t2dt=2π ,得到 C = π − π 3 C=\pi-\frac{\sqrt{\pi}}{3} C=π−3π
另一方面,令 g ( u ) = 2 arctan u + u 1 + u 2 g(u)=2\arctan u+\frac{u}{1+u^2} g(u)=2arctanu+1+u2u,则有 g ′ ( u ) = 3 + u 2 ( 1 + u 2 ) 2 > 0 g'(u)=\frac{3+u^2}{(1+u^2)^2}>0 g′(u)=(1+u2)23+u2>0
所以函数 g ( u ) 在 ( − ∞ , + ∞ ) 上 严 格 单 调 递 增 g(u)在(-\infin,+\infin)上严格单调递增 g(u)在(−∞,+∞)上严格单调递增,又由于 f ( 0 ) ≤ 1 f(0)\le 1 f(0)≤1因此有
C = g ( f ( 0 ) ) ≤ g ( 1 ) = π + 1 2 C=g(f(0))\le g(1)=\frac{\pi+1}{2} C=g(f(0))≤g(1)=2π+1
但之前计算出 C = π − π 3 > π + 1 2 C=\pi-\frac{\sqrt{\pi}}{3}>\frac{\pi+1}{2} C=π−3π >2π+1,矛盾,因此假设不成立,有 lim n → ∞ f ( x ) = L \lim_{n \rightarrow \infin}f(x)=L limn→∞f(x)=L且 L L L为有限数
最后,令 M = max ( ∣ f ( 0 ) ∣ , ∣ L ∣ ) M=\max(\left|f(0)\right|,\left|L\right|) M=max(∣f(0)∣,∣L∣),则有 ∣ f ( x ) ∣ ≤ M , ∀ x ∈ [ 0 , + ∞ ) \left|f(x)\right|\le M, \forall x \in [0,+\infin) ∣f(x)∣≤M,∀x∈[0,+∞)