acm-(数论、莫比乌斯反演、杜教筛)51nod 1227 平均最小公倍数

it2023-06-12  64

传送门 设函数 F ( n ) = ∑ k = 1 n 1 k ∑ i = 1 k l c m ( i , k ) F(n)=\sum_{k=1}^n\frac 1k\sum_{i=1}^klcm(i,k) F(n)=k=1nk1i=1klcm(i,k),题目就是让求 F ( b ) − F ( a − 1 ) F(b)-F(a-1) F(b)F(a1),于是对 F ( n ) F(n) F(n)先套路反演一波,得到 F ( n ) = n + ∑ i = 1 n f ( i ) 2 F(n)=\frac{n+\sum_{i=1}^nf(i)}2 F(n)=2n+i=1nf(i)( f ( n ) = ∑ d ∣ n d φ ( d ) f(n)=\sum_{d\mid n}d\varphi(d) f(n)=dndφ(d)),设 S ( n ) = ∑ i = 1 n f ( i ) S(n)=\sum_{i=1}^nf(i) S(n)=i=1nf(i),看上去就像杜教筛的样子,由于 f = ( i d ⋅ φ ) ∗ I f=(id\cdot \varphi)*I f=(idφ)I,故我们可以设 g = f ∗ i d = ( ( φ ∗ i d ) ∗ i d ) ∗ I = σ 2 g=f*id=((\varphi*id)*id)*I=\sigma_2 g=fid=((φid)id)I=σ2,又由于 ∑ i = 1 n g ( i ) = ∑ i = 1 n i 2 ⌊ n i ⌋ \sum_{i=1}^ng(i)=\sum_{i=1}^ni^2\lfloor \frac ni\rfloor i=1ng(i)=i=1ni2in,显然可以分块 O ( n ) O(\sqrt n) O(n )求解,不过我们可以预处理出 g g g函数的 n 2 3 n^{\frac 23} n32的前缀和,这样能加快速度,然后在此基础上套一个杜教筛式子,我们有 S ( n ) = ∑ i = 1 n g ( i ) − ∑ i = 2 n i S ( ⌊ n i ⌋ ) S(n)=\sum_{i=1}^ng(i)-\sum_{i=2}^niS(\lfloor\frac ni\rfloor) S(n)=i=1ng(i)i=2niS(in),由于计算 ∑ i = 1 n g ( i ) \sum_{i=1}^ng(i) i=1ng(i)比较快,总复杂度应该还是 O ( n 2 3 ) O(n^{\frac 23}) O(n32),注意 f f f函数也要预处理一下前缀和,否则杜教筛复杂度会退化。

int nn,N,limt,prim[maxn],tot,s[maxn],e[maxn],f[maxn],g[maxm],dp[maxm],ss[maxn], dps[maxm],es[maxn],fs[maxn]; bool flag[maxn]; int id(int x){ return x<=limt?x:nn/x+limt; } void init(int n){ s[1]=1,ss[1]=1; FOR(i,2,n+1){ if(!flag[i])prim[tot++]=i,e[i]=1ll*i*(i-1)%mod,s[i]=e[i]+1,f[i]=1, es[i]=1ll*i*i%mod,ss[i]=es[i]+1,fs[i]=1; for(register int j=0;j<tot && prim[j]*i<=n;++j){ flag[i*prim[j]]=1; if(i%prim[j]==0){ e[i*prim[j]]=1ll*e[i]*sqr(prim[j])%mod; f[i*prim[j]]=f[i]; s[i*prim[j]]=(s[i]+1ll*e[i*prim[j]]*f[i]%mod)%mod; es[i*prim[j]]=1ll*es[i]*sqr(prim[j])%mod; fs[i*prim[j]]=fs[i]; ss[i*prim[j]]=(ss[i]+1ll*es[i*prim[j]]*fs[i]%mod)%mod; break; } e[i*prim[j]]=1ll*prim[j]*(prim[j]-1)%mod; f[i*prim[j]]=s[i]; s[i*prim[j]]=1ll*s[i]*(e[i*prim[j]]+1)%mod; es[i*prim[j]]=sqr(prim[j]); fs[i*prim[j]]=ss[i]; ss[i*prim[j]]=1ll*ss[i]*(es[i*prim[j]]+1)%mod; } } FOR(i,1,n+1)add(s[i],s[i-1]),add(ss[i],ss[i-1]); } int SS(int n){ if(n<=N)return ss[n]; register int idd=id(n),i=1,j,ans=0,pre=0,cur=0; if(dps[idd])return dps[idd]; while(i<=n){ j=n/(n/i); add(ans,1ll*((cur=sm2(j))-pre+mod)*(n/i)%mod); pre=cur; i=j+1; } return dps[idd]=ans; } int S(int n){ if(n<=N)return s[n]; register int idd=id(n),ans=SS(n),i=2,j,cur=0,pre=1; if(dp[idd])return dp[idd]; while(i<=n){ j=n/(n/i); dec(ans,1ll*((cur=sm1(j))-pre+mod)*S(n/i)%mod); i=j+1; pre=cur; } return dp[idd]=ans; } int cal(int n){ if(n<=0)return 0; nn=n; limt=sqrt(nn); register int i =1,j,ans=0,c=nn/limt+limt; FOR(i,1,c+1)dps[i]=dp[i]=0; return 1ll*(S(n)+n)*qpow(2,mod-2,mod)%mod; } int main(){ int a,b; rd(&a,&b); N=pow(b,2.0/3.0); init(N=max(N,10000)); wrn((cal(b)-cal(a-1)+mod)%mod); }
最新回复(0)