numpy简单学习

it2023-05-18  79

import pandas import numpy as np array = np.array([[1, 2, 3], [4, 5, 6]]) print(array) print("number of dim:", array.ndim) print("shape: ", array.shape) print("size: ", array.size) a = np.array([1, 23, 4], dtype=np.float64) print(a.dtype) print('----------------------------------') b = np.array([[3, 4, 2], [9, 3, 4]]) c = np.zeros((4, 5)) print(c) print('----------------------------------') c = np.ones((4, 3)) print(c) print('----------------------------------') c = np.arange(1, 20, 2) print(c) print('----------------------------------') c = np.arange(12).reshape((3, 4)) print(c) print('----------------------------------') c = np.linspace(0, 10, 8).reshape(4, 2) print(c) print('----------------------------------') import numpy as np a = np.array([10, 20, 30, 40]) b = np.arange(4) print(a, b) print('----------------------------------') print(b < 3) print('----------------------------------') c = a - b print(c) print('----------------------------------') c = 10 * np.sin(a) print(c) print('----------------------------------') a = np.array([[2, 2], [1, 1]]) b = np.arange(4).reshape((2, 2)) c = a * b print(c) print('----------------------------------') c = np.dot(a, b) # 或 a.dot(b) print(c) print('----------------------------------') a = np.random.random((3, 4)) print(a) print(np.min(a)) print(np.max(a)) print(np.sum(a)) # axis 参数为 1 表示行 0 表示列 # 针对 列 或者 行 求和 求最小值或者最大值 print('----------------------------------') A = np.arange(2, 14).reshape((3, 4)) print(A) print(np.argmin(A)) print(np.argmax(A)) print('----------------------------------') print(np.mean(A)) print(np.average(A)) print('----------------------------------') print(np.median(A)) print('----------------------------------') print(np.cumsum(A)) print('----------------------------------') print(np.diff(A)) print('----------------------------------') print(np.nonzero(A)) A = np.arange(14, 2, -1).reshape((3, 4)) print(A) print(np.sort(A)) # 逐行排序 print('----------------------------------') print(np.transpose(A)) print(A.T) print('----------------------------------') A = np.arange(1, 10).reshape(3, 3) print(A) print(A[2][1]) print(A[2, 1]) print(A[:, 1]) print(A[2, :]) print('----------------------------------') for row in A: print(row) print('----------------------------------') for column in A.T: print(column) print('----------------------------------') print(A.flatten()) for item in A.flat: print(item) print('----------------------------------') import numpy as np A = np.array([1, 1, 1]) B = np.array([2, 2, 2]) C = np.vstack((A, B)) D = np.hstack((A, B)) print(C) print(A.shape, C.shape) print(D) print(D.shape) print(A[:, np.newaxis])

 

最新回复(0)