初等数论 课堂笔记 第四章 -- 一次同余式

it2023-05-05  108

索引

同余式定义定理: ∃ a ∈ Z ,   f ( a ) ≡ 0 (   m o d   m )   ⇔   ∀ x ≡ a (   m o d   m ) ,   f ( x ) ≡ 0 (   m o d   m ) \exists a\in \mathbb{Z},\text{ }f\left( a \right)\equiv 0\left( \bmod m \right)\text{ }\Leftrightarrow \text{ }\forall x\equiv a\left( \bmod m \right),\text{ }f\left( x \right)\equiv 0\left( \bmod m \right) aZ, f(a)0(modm)  xa(modm), f(x)0(modm)定理: 一次同余式 a x ≡ b (   m o d   m ) ,   a ≡ 0 (   m o d   m ) ax\equiv b\left( \bmod m \right),\text{ }a\cancel{\equiv }0\left( \bmod m \right) axb(modm), a 0(modm)有(整数)解 ⇔ gcd ⁡ ( a , m ) ∣ b \Leftrightarrow \left. \gcd \left( a,m \right) \right|b gcd(a,m)b例题与练习

同余式定义

   m ∈ Z > 0 m\in {{\mathbb{Z}}_{>0}} mZ>0 a i ∈ Z {{a}_{i}}\in \mathbb{Z} aiZ f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f\left( x \right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+\cdots +{{a}_{1}}x+{{a}_{0}} f(x)=anxn+an1xn1++a1x+a0,称 f ( x ) ≡ 0 (   m o d   m ) f\left( x \right)\equiv 0\left( \bmod m \right) f(x)0(modm) 为模 m m m的同余式。若 a n ≡ 0 (   m o d   m ) {{a}_{n}}\cancel{\equiv }0\left( \bmod m \right) an 0(modm),则称 n n n为该同余式的次数。

定理: ∃ a ∈ Z ,   f ( a ) ≡ 0 (   m o d   m )   ⇔   ∀ x ≡ a (   m o d   m ) ,   f ( x ) ≡ 0 (   m o d   m ) \exists a\in \mathbb{Z},\text{ }f\left( a \right)\equiv 0\left( \bmod m \right)\text{ }\Leftrightarrow \text{ }\forall x\equiv a\left( \bmod m \right),\text{ }f\left( x \right)\equiv 0\left( \bmod m \right) aZ, f(a)0(modm)  xa(modm), f(x)0(modm)

证明

( ⇐ ) \left( \Leftarrow \right) () a ≡ a (   m o d   m ) a\equiv a\left( \bmod m \right) aa(modm),推理是显然的。 ( ⇒ ) \left( \Rightarrow \right) () ∀ x ≡ a (   m o d   m ) ,   x − a ≡ 0 (   m o d   m )   ⇒   m ∣ ( x − a )   ⇒   ∃ k ∈ Z ,   s . t . \forall x\equiv a\left( \bmod m \right),\text{ }x-a\equiv 0\left( \bmod m \right)\text{ }\Rightarrow \text{ }\left. m \right|\left( x-a \right)\text{ }\Rightarrow \text{ }\exists k\in \mathbb{Z},\text{ }s.t. xa(modm), xa0(modm)  m(xa)  kZ, s.t. x − a = k m   ⇔   a = x − k m x-a=km\text{ }\Leftrightarrow \text{ }a=x-km xa=km  a=xkm f ( a ) ≡ 0 ⇒ 0 ≡ f ( x − k m ) = a 0 + ∑ j = 1 n a j ( x − k m ) j ≡ a 0 + ∑ j = 1 n ( x − 0 ) j = ∑ j = 0 n a j x j = f ( x )     m o d   m \begin{matrix} f\left( a \right)\equiv 0 \\ \begin{aligned} & \Rightarrow 0\equiv f\left( x-km \right)={{a}_{0}}+\sum\limits_{j=1}^{n}{{{a}_{j}}{{\left( x-km \right)}^{j}}} \\ & \equiv {{a}_{0}}+\sum\limits_{j=1}^{n}{{{\left( x-0 \right)}^{j}}}=\sum\limits_{j=0}^{n}{{{a}_{j}}{{x}^{j}}}=f\left( x \right)\text{ }\bmod m \\ \end{aligned} \\ \end{matrix} f(a)00f(xkm)=a0+j=1naj(xkm)ja0+j=1n(x0)j=j=0najxj=f(x) modm

定理: 一次同余式 a x ≡ b (   m o d   m ) ,   a ≡ 0 (   m o d   m ) ax\equiv b\left( \bmod m \right),\text{ }a\cancel{\equiv }0\left( \bmod m \right) axb(modm), a 0(modm)有(整数)解 ⇔ gcd ⁡ ( a , m ) ∣ b \Leftrightarrow \left. \gcd \left( a,m \right) \right|b gcd(a,m)b

证明   a x ≡ b (   m o d   m ) ⇔ a x − b ≡ 0 (   m o d   m ) ⇔ m ∣ ( a x − b ) ⇔ ∃ y ∈ Z ,  s.t .   a x − b = m y ⇔ a x − m y = b \begin{aligned} & \text{ }ax\equiv b\left( \bmod m \right) \\ & \Leftrightarrow ax-b\equiv 0\left( \bmod m \right) \\ & \Leftrightarrow \left. m \right|\left( ax-b \right) \\ & \Leftrightarrow \exists y\in \mathbb{Z},\text{ s}\text{.t}.\text{ }ax-b=my \\ & \Leftrightarrow ax-my=b \\ \end{aligned}  axb(modm)axb0(modm)m(axb)yZ, s.t. axb=myaxmy=b a x − m y = b ax-my=b axmy=b有解 ⇔ gcd ⁡ ( a , − m ) = gcd ⁡ ( a , m ) ∣ b \Leftrightarrow \gcd \left( a,-m \right)=\left. \gcd \left( a,m \right) \right|b gcd(a,m)=gcd(a,m)b

例题与练习

解同余式 4 x ≡ 13     m o d   47 4x\equiv 13\text{ }\bmod 47 4x13 mod47 解    gcd ⁡ ( 4 , 47 ) = 1 ∣ 13 \gcd \left( 4,47 \right)=\left. 1 \right|13 gcd(4,47)=113,因此同余式有解。 4 x ≡ 13     m o d   47 ⇔ ( 4 x ⋅ 12 ) ≡ ( 13 × 12 ) = 156 ≡ 15     m o d   47 ⇔ 48 x ≡ 15     m o d   47 ⇔ x ≡ 15     m o d   47   ( ∵ 48 = 47 × 1 + 1 ) \begin{aligned} & 4x\equiv 13\text{ }\bmod 47 \\ & \Leftrightarrow \left( 4x\centerdot 12 \right)\equiv \left( 13\times 12 \right)=156\equiv 15\text{ }\bmod 47 \\ & \Leftrightarrow 48x\equiv 15\text{ }\bmod 47 \\ & \Leftrightarrow x\equiv 15\text{ }\bmod 47\text{ }\left( \because 48=47\times 1+1 \right) \\ \end{aligned} 4x13 mod47(4x12)(13×12)=15615 mod4748x15 mod47x15 mod47 (48=47×1+1)

解同余式 10 x ≡ 6 (   m o d   12 ) 10x\equiv 6\left( \bmod 12 \right) 10x6(mod12)   10 x ≡ 6 (   m o d   12 ) ⇔ 10 2 x ≡ 6 2 (   m o d   12 2 ) ⇔ 5 x ≡ 3 (   m o d   6 ) \begin{aligned} & \text{ }10x\equiv 6\left( \bmod 12 \right) \\ & \Leftrightarrow \frac{10}{2}x\equiv \frac{6}{2}\left( \bmod \frac{12}{2} \right) \\ & \Leftrightarrow 5x\equiv 3\left( \bmod 6 \right) \\ \end{aligned}  10x6(mod12)210x26(mod212)5x3(mod6) gcd ⁡ ( 5 , 6 ) = 1 ∣ 3 \gcd \left( 5,6 \right)=\left. 1 \right|3 gcd(5,6)=13,同余式有解。

法一 问题等价于求解 5 x + 6 y = 3 5x+6y=3 5x+6y=3。 观察得 5 x + 6 y = 1 5x+6y=1 5x+6y=1有特解 ( − 1 , 1 ) \left( -1,1 \right) (1,1) 因此有 5 x + 6 y = 3 5x+6y=3 5x+6y=3有特解 ( − 3 , 3 ) \left( -3,3 \right) (3,3),通解是 { x = − 3 − 6 t ≡ − 3 ≡ 3 (   m o d   6 ) y = 3 + 5 t ,   ∀ t ∈ Z \left\{ \begin{aligned} & x=-3-6t\equiv -3\equiv 3\left( \bmod 6 \right) \\ & y=3+5t \\ \end{aligned} \right.,\text{ }\forall t\in \mathbb{Z} {x=36t33(mod6)y=3+5t, tZ

法二   5 x ≡ 3 (   m o d   6 ) ⇔ − x ≡ 3 (   m o d   6 )   ( ∵ 5 ≡ − 1     m o d   6 ) ⇔ x ≡ − 3 ≡ 3 (   m o d   6 ) \begin{aligned} & \text{ }5x\equiv 3\left( \bmod 6 \right) \\ & \Leftrightarrow -x\equiv 3\left( \bmod 6 \right)\text{ }\left( \because 5\equiv -1\text{ }\bmod 6 \right) \\ & \Leftrightarrow x\equiv -3\equiv 3\left( \bmod 6 \right) \\ \end{aligned}  5x3(mod6)x3(mod6) (51 mod6)x33(mod6)

注    x ≡ 3 (   m o d   6 ) x\equiv 3\left( \bmod 6 \right) x3(mod6)也可以写成以下形式 x ≡ 3 , 9 (   m o d   12 ) x\equiv 3,9\left( \bmod 12 \right) x3,9(mod12)

解同余式 10 x ≡ 6 (   m o d   14 ) 10x\equiv 6\left( \bmod 14 \right) 10x6(mod14)   10 x ≡ 6 (   m o d   14 ) ⇔ 10 2 x ≡ 6 2 (   m o d   14 2 ) ⇔ 5 x ≡ 3 (   m o d   7 ) \begin{aligned} & \text{ }10x\equiv 6\left( \bmod 14 \right) \\ & \Leftrightarrow \frac{10}{2}x\equiv \frac{6}{2}\left( \bmod \frac{14}{2} \right) \\ & \Leftrightarrow 5x\equiv 3\left( \bmod 7 \right) \\ \end{aligned}  10x6(mod14)210x26(mod214)5x3(mod7) gcd ⁡ ( 5 , 7 ) = 1 ∣ 3 \gcd \left( 5,7 \right)=\left. 1 \right|3 gcd(5,7)=13,因此同余式有解。   5 x ≡ 3 (   m o d   7 ) ⇔ 5 x + 0 ≡ 3 + 7 (   m o d   7 ) ⇔ 5 x ≡ 10 (   m o d   7 ) ⇔ x ≡ 2 (   m o d   7 )   ( ∵ gcd ⁡ ( 5 , 7 ) = 1 ) \begin{aligned} & \text{ }5x\equiv 3\left( \bmod 7 \right) \\ & \Leftrightarrow 5x+0\equiv 3+7\left( \bmod 7 \right) \\ & \Leftrightarrow 5x\equiv 10\left( \bmod 7 \right) \\ & \Leftrightarrow x\equiv 2\left( \bmod 7 \right)\text{ }\left( \because \gcd \left( 5,7 \right)=1 \right) \\ \end{aligned}  5x3(mod7)5x+03+7(mod7)5x10(mod7)x2(mod7) (gcd(5,7)=1)

解同余式 256 x ≡ 179 (   m o d   337 ) 256x\equiv 179\left( \bmod 337 \right) 256x179(mod337) 法一   256 x ≡ 179 (   m o d   337 ) ⇔ ( 256 − 337 ) x = − 81 x ≡ 179 (   m o d   337 ) \begin{aligned} & \text{ }256x\equiv 179\left( \bmod 337 \right) \\ & \Leftrightarrow \left( 256-337 \right)x=-81x\equiv 179\left( \bmod 337 \right) \\ \end{aligned}  256x179(mod337)(256337)x=81x179(mod337) 问题等价于求解不定方程 − 81 x + 337 y = 179 -81x+337y=179 81x+337y=179的解。 337 = 81 × 4 + 13 81 = 13 × 6 + 3 13 = 3 × 4 + 1 \begin{aligned} & 337=81\times 4+13 \\ & 81=13\times 6+3 \\ & 13=3\times 4+1 \\ \end{aligned} 337=81×4+1381=13×6+313=3×4+1 gcd ⁡ ( − 81 , 337 ) = 1 ∣ 179 \gcd \left( -81,337 \right)=\left. 1 \right|179 gcd(81,337)=1179,不定方程有解。 P 0 = 1 ,   P 1 = 4 ,   P 2 = 6 × 4 + 1 = 25 ,   P 3 = 4 × 25 + 4 = 104 Q 0 = 0 ,   Q 1 = 1 ,   Q 2 = 6 ,   Q 3 = 4 × 6 + 1 = 25 \begin{aligned} & {{P}_{0}}=1,\text{ }{{P}_{1}}=4,\text{ }{{P}_{2}}=6\times 4+1=25,\text{ }{{P}_{3}}=4\times 25+4=104 \\ & {{Q}_{0}}=0,\text{ }{{Q}_{1}}=1,\text{ }{{Q}_{2}}=6,\text{ }{{Q}_{3}}=4\times 6+1=25 \\ \end{aligned} P0=1, P1=4, P2=6×4+1=25, P3=4×25+4=104Q0=0, Q1=1, Q2=6, Q3=4×6+1=25 因此 − 81 x + 337 y = 1 -81x+337y=1 81x+337y=1有特解 ( ( − 1 ) 3 + 1 P 3 , ( − 1 ) 3 − 1 Q 3 ) = ( 104 , 25 ) \left( {{\left( -1 \right)}^{3+1}}{{P}_{3}},{{\left( -1 \right)}^{3-1}}{{Q}_{3}} \right)=\left( 104,25 \right) ((1)3+1P3,(1)31Q3)=(104,25) − 81 x + 337 y = 179 -81x+337y=179 81x+337y=179有通解 { x = 104 × 179 − 337 t y = 25 × 179 − 81 t ,   ∀ t ∈ Z \left\{ \begin{aligned} & x=104\times 179-337t \\ & y=25\times 179-81t \\ \end{aligned} \right.,\text{ }\forall t\in \mathbb{Z} {x=104×179337ty=25×17981t, tZ 因此同余式 256 x ≡ 179 (   m o d   337 ) 256x\equiv 179\left( \bmod 337 \right) 256x179(mod337)的解是 x ≡ 104 × 179 ≡ 104 × ( − 158 )   ( ∵ 179 − 337 = 158 ) = ( 2 3 × 13 ) × ( − 2 × 79 ) = ( − 2 4 ) × ( 13 × 79 ) ≡ ( − 16 ) × 16   ( ∵ 13 × 79 = 1027 = 337 × 3 + 16 ) = − 256 ≡ 81   ( − 256 = − 337 × 1 + 81 )   m o d   337 \begin{aligned} & x\equiv 104\times 179 \\ & \equiv 104\times \left( -158 \right)\text{ }\left( \because 179-337=158 \right) \\ & =\left( {{2}^{3}}\times 13 \right)\times \left( -2\times 79 \right) \\ & =\left( -{{2}^{4}} \right)\times \left( 13\times 79 \right) \\ & \equiv \left( -16 \right)\times 16\text{ }\left( \because 13\times 79=1027=337\times 3+16 \right) \\ & =-256 \\ & \equiv 81\text{ }\left( -256=-337\times 1+81 \right) \\ & \bmod 337 \\ \end{aligned} x104×179104×(158) (179337=158)=(23×13)×(2×79)=(24)×(13×79)(16)×16 (13×79=1027=337×3+16)=25681 (256=337×1+81)mod337

法二   256 x ≡ 179 (   m o d   337 ) ⇔ 256 x ≡ ( 179 + 337 ) = 516 (   m o d   337 ) ⇔ 256 4 x = 64 x ≡ 516 4 = 129 (   m o d   337 )   ( ∵ gcd ⁡ ( 2 , 337 ) = 1   ⇒   gcd ⁡ ( 2 2 = 4 , 337 ) = 1 ) ⇔ 64 x ≡ ( 129 − 337 ) = − 208 (   m o d   337 ) ⇔ 64 16 x = 4 x ≡ − 208 16 = − 13 (   m o d   337 )   ( ∵ gcd ⁡ ( 2 , 337 ) = 1   ⇒   gcd ⁡ ( 2 4 = 16 , 337 ) = 1 ) ⇔ 4 x ≡ ( − 13 + 337 ) = 324 (   m o d   337 ) ⇔ x ≡ 81 (   m o d   337 ) \begin{aligned} & \text{ }256x\equiv 179\left( \bmod 337 \right) \\ & \Leftrightarrow 256x\equiv \left( 179+337 \right)=516\left( \bmod 337 \right) \\ & \Leftrightarrow \frac{256}{4}x=64x\equiv \frac{516}{4}=129\left( \bmod 337 \right)\text{ }\left( \begin{aligned} & \because \gcd \left( 2,337 \right)=1\text{ } \\ & \Rightarrow \text{ }\gcd \left( {{2}^{2}}=4,337 \right)=1 \\ \end{aligned} \right) \\ & \Leftrightarrow 64x\equiv \left( 129-337 \right)=-208\left( \bmod 337 \right) \\ & \Leftrightarrow \frac{64}{16}x=4x\equiv \frac{-208}{16}=-13\left( \bmod 337 \right)\text{ }\left( \begin{aligned} & \because \gcd \left( 2,337 \right)=1\text{ } \\ & \Rightarrow \text{ }\gcd \left( {{2}^{4}}=16,337 \right)=1 \\ \end{aligned} \right) \\ & \Leftrightarrow 4x\equiv \left( -13+337 \right)=324\left( \bmod 337 \right) \\ & \Leftrightarrow x\equiv 81\left( \bmod 337 \right) \\ \end{aligned}  256x179(mod337)256x(179+337)=516(mod337)4256x=64x4516=129(mod337) (gcd(2,337)=1  gcd(22=4,337)=1)64x(129337)=208(mod337)1664x=4x16208=13(mod337) (gcd(2,337)=1  gcd(24=16,337)=1)4x(13+337)=324(mod337)x81(mod337)

解同余式 1215 x ≡ 560 (   m o d   2755 ) 1215x\equiv 560\left( \bmod 2755 \right) 1215x560(mod2755)   1215 x ≡ 560 (   m o d   2755 ) ⇔ 1215 5 x = 243 x ≡ 560 5 = 112 (   m o d   2755 5 = 551 ) ⇔ 243 x ≡ ( 112 + 551 ) = 663 (   m o d   551 ) ⇔ 243 3 x = 81 x ≡ 663 3 = 221 (   m o d   551 )   ( ∵ gcd ⁡ ( 3 , 551 ) = 1 ) ⇔ 81 x ≡ ( 221 − 551 ) = − 330 (   m o d   551 ) ⇔ 81 3 x = 27 x ≡ − 330 3 = − 110 (   m o d   551 ) ⇔ 27 x ≡ ( − 110 + 551 ) = 441 (   m o d   551 ) ⇔ 27 3 x = 9 x ≡ 441 3 = 147 (   m o d   551 ) ⇔ 9 3 x = 3 x ≡ 147 3 = 49 (   m o d   551 ) ⇔ 3 x ≡ ( 49 + 551 ) = 600 (   m o d   551 ) ⇔ x ≡ 200 (   m o d   551 ) \begin{aligned} & \text{ }1215x\equiv 560\left( \bmod 2755 \right) \\ & \Leftrightarrow \frac{1215}{5}x=243x\equiv \frac{560}{5}=112\left( \bmod \frac{2755}{5}=551 \right) \\ & \Leftrightarrow 243x\equiv \left( 112+551 \right)=663\left( \bmod 551 \right) \\ & \Leftrightarrow \frac{243}{3}x=81x\equiv \frac{663}{3}=221\left( \bmod 551 \right)\text{ }\left( \because \gcd \left( 3,551 \right)=1 \right) \\ & \Leftrightarrow 81x\equiv \left( 221-551 \right)=-330\left( \bmod 551 \right) \\ & \Leftrightarrow \frac{81}{3}x=27x\equiv \frac{-330}{3}=-110\left( \bmod 551 \right) \\ & \Leftrightarrow 27x\equiv \left( -110+551 \right)=441\left( \bmod 551 \right) \\ & \Leftrightarrow \frac{27}{3}x=9x\equiv \frac{441}{3}=147\left( \bmod 551 \right) \\ & \Leftrightarrow \frac{9}{3}x=3x\equiv \frac{147}{3}=49\left( \bmod 551 \right) \\ & \Leftrightarrow 3x\equiv \left( 49+551 \right)=600\left( \bmod 551 \right) \\ & \Leftrightarrow x\equiv 200\left( \bmod 551 \right) \\ \end{aligned}  1215x560(mod2755)51215x=243x5560=112(mod52755=551)243x(112+551)=663(mod551)3243x=81x3663=221(mod551) (gcd(3,551)=1)81x(221551)=330(mod551)381x=27x3330=110(mod551)27x(110+551)=441(mod551)327x=9x3441=147(mod551)39x=3x3147=49(mod551)3x(49+551)=600(mod551)x200(mod551)

解同余式 1296 x ≡ 1125 (   m o d   1935 ) 1296x\equiv 1125\left( \bmod 1935 \right) 1296x1125(mod1935)   1296 x ≡ 1125 (   m o d   1935 ) ⇔ 1296 3 = 432 x ≡ 1125 3 = 375 (   m o d   1935 3 = 645 ) ⇔ 432 3 x = 144 x ≡ 375 3 = 125 (   m o d   645 3 = 215 ) ⇔ 144 x ≡ ( 125 − 215 ) = − 90 (   m o d   215 ) ⇔ 144 3 x = 48 x ≡ − 90 3 = − 30 (   m o d   215 )   ( ∵ gcd ⁡ ( 3 , 215 ) = 1 ) ⇔ 48 3 x = 16 x ≡ − 30 3 = − 10 (   m o d   215 ) ⇔ 16 2 x = 8 x ≡ − 10 2 = − 5 (   m o d   215 )   ( ∵ gcd ⁡ ( 2 , 215 ) = 1 ) ⇔ 8 x ≡ ( − 5 + 215 ) = 210 (   m o d   215 ) ⇔ 8 2 x = 4 x ≡ 210 2 = 105 (   m o d   215 ) ⇔ 4 x ≡ ( 105 + 215 ) = 320 (   m o d   215 ) ⇔ x ≡ 80 (   m o d   215 ) \begin{aligned} & \text{ }1296x\equiv 1125\left( \bmod 1935 \right) \\ & \Leftrightarrow \frac{1296}{3}=432x\equiv \frac{1125}{3}=375\left( \bmod \frac{1935}{3}=645 \right) \\ & \Leftrightarrow \frac{432}{3}x=144x\equiv \frac{375}{3}=125\left( \bmod \frac{645}{3}=215 \right) \\ & \Leftrightarrow 144x\equiv \left( 125-215 \right)=-90\left( \bmod 215 \right) \\ & \Leftrightarrow \frac{144}{3}x=48x\equiv \frac{-90}{3}=-30\left( \bmod 215 \right)\text{ }\left( \because \gcd \left( 3,215 \right)=1 \right) \\ & \Leftrightarrow \frac{48}{3}x=16x\equiv \frac{-30}{3}=-10\left( \bmod 215 \right) \\ & \Leftrightarrow \frac{16}{2}x=8x\equiv \frac{-10}{2}=-5\left( \bmod 215 \right)\text{ }\left( \because \gcd \left( 2,215 \right)=1 \right) \\ & \Leftrightarrow 8x\equiv \left( -5+215 \right)=210\left( \bmod 215 \right) \\ & \Leftrightarrow \frac{8}{2}x=4x\equiv \frac{210}{2}=105\left( \bmod 215 \right) \\ & \Leftrightarrow 4x\equiv \left( 105+215 \right)=320\left( \bmod 215 \right) \\ & \Leftrightarrow x\equiv 80\left( \bmod 215 \right) \\ \end{aligned}  1296x1125(mod1935)31296=432x31125=375(mod31935=645)3432x=144x3375=125(mod3645=215)144x(125215)=90(mod215)3144x=48x390=30(mod215) (gcd(3,215)=1)348x=16x330=10(mod215)216x=8x210=5(mod215) (gcd(2,215)=1)8x(5+215)=210(mod215)28x=4x2210=105(mod215)4x(105+215)=320(mod215)x80(mod215)

求联立同余式 { x + 4 y − 29 ≡ 0 (   m o d   143 )   ( 1 ) 2 x − 9 y + 84 ≡ 0 (   m o d   143 )   ( 2 ) \left\{ \begin{aligned} & x+4y-29\equiv 0\left( \bmod 143 \right)\text{ }\left( 1 \right) \\ & 2x-9y+84\equiv 0\left( \bmod 143 \right)\text{ }\left( 2 \right) \\ \end{aligned} \right. {x+4y290(mod143) (1)2x9y+840(mod143) (2) 的解。 解 ( 1 ) × 2 − ( 2 )   ⇒   17 y − 142 ≡ 0 (   m o d   143 )   ⇒ 17 y ≡ 142 ≡ − 1 (   m o d   143 ) \left( 1 \right)\times 2-\left( 2 \right)\text{ }\Rightarrow \text{ }17y-142\equiv 0\left( \bmod 143 \right)\text{ }\Rightarrow 17y\equiv 142\equiv -1\left( \bmod 143 \right) (1)×2(2)  17y1420(mod143) 17y1421(mod143) gcd ⁡ ( 11 , 17 ) = 1 ,   gcd ⁡ ( 13 , 17 ) = 1 \gcd \left( 11,17 \right)=1,\text{ }\gcd \left( 13,17 \right)=1 gcd(11,17)=1, gcd(13,17)=1,由欧拉定理有 17 φ ( 11 ) = 17 10 ≡ 1 (   m o d   11 )   ⇒   ( 1 7 10 ) 6 = 17 60 ≡ 1 (   m o d   11 ) 17 φ ( 13 ) = 17 12 ≡ 1 (   m o d   13 )   ⇒   ( 17 12 ) 5 = 17 60 ≡ 1 (   m o d   13 ) } ⇒  1 7 60 ≡ 1  mod ( l c m ( 11 , 13 ) = 143 ) \begin{aligned} & \left. \begin{aligned} & {{17}^{\varphi \left( 11 \right)}}={{17}^{10}}\equiv 1\left( \bmod 11 \right)\text{ }\Rightarrow \text{ }{{\left( \text{1}{{\text{7}}^{10}} \right)}^{6}}\text{=}{{17}^{60}}\equiv 1\left( \bmod 11 \right) \\ & {{17}^{\varphi \left( 13 \right)}}={{17}^{12}}\equiv 1\left( \bmod 13 \right)\text{ }\Rightarrow \text{ }{{\left( {{17}^{12}} \right)}^{5}}={{17}^{60}}\equiv 1\left( \bmod 13 \right) \\ \end{aligned} \right\} \\ & \Rightarrow \text{ 1}{{\text{7}}^{60}}\equiv 1\text{ mod}\left( lcm\left( 11,13 \right)=143 \right) \\ \end{aligned} 17φ(11)=17101(mod11)  (1710)6=17601(mod11)17φ(13)=17121(mod13)  (1712)5=17601(mod13) 17601 mod(lcm(11,13)=143) 因此有 y = 1 ⋅ y ≡ 17 60 ⋅ y = ( 17 y ) ⋅ 17 59 ≡ − 17 59   ( ∵ 17 y ≡ − 1 (   m o d   143 ) ) = − 17 × ( 17 2 ) 29 ≡ − 17 × 3 29   ( ∵ 17 2 = 289 = 143 × 2 + 3 ) = ( − 17 × 3 ) × 3 28 = − 51 × ( 3 4 ) 7 = − 51 × 81 7 = ( − 51 × 81 ) × ( 81 2 ) 3 ≡ ( 51 × 62 ) × ( 62 2 ) 3 ≡ 16 × ( 126 ) 3   ( ∵ 51 × 62 = 3162 = 143 × 22 + 16 62 2 = 3844 = 143 × 26 + 126 ) ≡ 16 × ( − 17 ) 3 = ( − 16 × 17 ) × 17 2 ≡ 14 × 3   ( ∵ − 16 × 17 = − 272 = 143 × ( − 2 ) + 14 17 2 = 289 = 143 × 2 + 3 ) = 42 (   m o d   143 ) \begin{aligned} & y=1\centerdot y\equiv {{17}^{60}}\centerdot y=\left( 17y \right)\centerdot {{17}^{59}} \\ & \equiv -{{17}^{59}}\text{ }\left( \because 17y\equiv -1\left( \bmod 143 \right) \right) \\ & =-17\times {{\left( {{17}^{2}} \right)}^{29}} \\ & \equiv -17\times {{3}^{29}}\text{ }\left( \because {{17}^{2}}=289=143\times 2+3 \right) \\ & =\left( -17\times 3 \right)\times {{3}^{28}} \\ & =-51\times {{\left( {{3}^{4}} \right)}^{7}} \\ & =-51\times {{81}^{7}} \\ & =\left( -51\times 81 \right)\times {{\left( {{81}^{2}} \right)}^{3}} \\ & \equiv \left( 51\times 62 \right)\times {{\left( {{62}^{2}} \right)}^{3}} \\ & \equiv 16\times {{\left( 126 \right)}^{3}}\text{ }\left( \begin{aligned} & \because 51\times 62=3162=143\times 22+16 \\ & {{62}^{2}}=3844=143\times 26+126 \\ \end{aligned} \right) \\ & \equiv 16\times {{\left( -17 \right)}^{3}} \\ & =\left( -16\times 17 \right)\times {{17}^{2}} \\ & \equiv 14\times 3\text{ }\left( \begin{aligned} & \because -16\times 17=-272=143\times \left( -2 \right)+14 \\ & {{17}^{2}}=289=143\times 2+3 \\ \end{aligned} \right) \\ & =42\left( \bmod 143 \right) \\ \end{aligned} y=1y1760y=(17y)17591759 (17y1(mod143))=17×(172)2917×329 (172=289=143×2+3)=(17×3)×328=51×(34)7=51×817=(51×81)×(812)3(51×62)×(622)316×(126)3 (51×62=3162=143×22+16622=3844=143×26+126)16×(17)3=(16×17)×17214×3 (16×17=272=143×(2)+14172=289=143×2+3)=42(mod143) 因此有 4 y ≡ 4 × 42 = 168 ≡ 25 (   m o d   143 ) ⇒ x + 4 y − 29 ≡ x + 25 − 29 = x − 4 ≡ 0 (   m o d   143 ) ⇒ x ≡ 4 (   m o d   143 ) \begin{aligned} & 4y\equiv 4\times 42=168\equiv 25\left( \bmod 143 \right) \\ & \Rightarrow x+4y-29\equiv x+25-29=x-4\equiv 0\left( \bmod 143 \right) \\ & \Rightarrow x\equiv 4\left( \bmod 143 \right) \\ \end{aligned} 4y4×42=16825(mod143)x+4y29x+2529=x40(mod143)x4(mod143) 因此该同余式组的解为 { x ≡ 4 (   m o d   143 ) y ≡ 42 (   m o d   143 ) \left\{ \begin{aligned} & x\equiv 4\left( \bmod 143 \right) \\ & y\equiv 42\left( \bmod 143 \right) \\ \end{aligned} \right. {x4(mod143)y42(mod143)

最新回复(0)