Stochastic Process 2nd (Sheldon M.Ross)

it2023-04-08  74

Chapter 1 Preliminaries

1 Probability1.1 Three Axioms of Probability1.2 Simple Consequences of Axioms1.3 Increasing or Decreasing Sequence of Events1.4 Proposition 11.4 Proposition 2 The Borel-Cantelli Lemma1.5 Proposition 3 Converse of the Borel-Cantelli Lemma


1 Probability

1.1 Three Axioms of Probability

For each event E E E of the sample space S S S a number P ( E ) P(E) P(E) is de fined and satisfies the following three axioms:

Axiom 1 0 ⩽ P ( E ) ⩽ 1 0 \leqslant P(E) \leqslant 1 0P(E)1Axiom 2 P ( S ) = 1 P(S) = 1 P(S)=1Axiom 3 For any sequence of events E 1 E_1 E1 , E 2 E_2 E2 , … that are mutually exclusive, that is, events for which E i E j = Φ E_iE_j=\varPhi EiEj=Φ when i ≠ j i \ne j i=j (where the Φ \varPhi Φ is the null set), P ( ⋃ i = 1 ∞ E i ) = ∑ i = 1 ∞ P ( E i ) P\left( \bigcup_{i=1}^{\infty}{E_i} \right) =\sum_{i=1}^{\infty}{P\left( E_i \right)} P(i=1Ei)=i=1P(Ei)

1.2 Simple Consequences of Axioms

We refer to P ( E ) P(E) P(E) as the probability of the event of E, and we can deduce some simple consequences of three axioms.

If E ⊂ F E\subset F EF, then P ( E ) ⩽ P ( F ) P(E) \leqslant P(F) P(E)P(F). P ( E c ) = 1 − P ( E ) P(E^c) = 1- P(E) P(Ec)=1P(E), where E c E^c Ec is the complement of E. P ( ⋃ i = 1 n E i ) = ∑ i = 1 n P ( E i ) P\left( \bigcup_{i=1}^{n}{E_i} \right) =\sum_{i=1}^{n}{P\left( E_i \right)} P(i=1nEi)=i=1nP(Ei), when the E i E_i Ei are mutually exclusive. P ( ⋃ i = 1 ∞ E i ) ⩽ ∑ i = 1 ∞ P ( E i ) P\left( \bigcup_{i=1}^{\infty}{E_i} \right) \leqslant \sum_{i=1}^{\infty}{P\left( E_i \right)} P(i=1Ei)i=1P(Ei)

1.3 Increasing or Decreasing Sequence of Events

If { E n , n ⩾ 1 } \left\{ E_n,n\geqslant 1 \right\} {En,n1} is an increasing sequence of events, then we define a new event, denoted by lim ⁡ n → ∞ E n \underset{n\rightarrow \infty}{\lim}E_n nlimEn by lim ⁡ n → ∞ E n = ⋃ i = 1 ∞ E i      w h e n   E n ⊂ E n + 1 , n ⩾ 1 \underset{n\rightarrow \infty}{\lim}E_n=\bigcup_{i=1}^{\infty}{E_i}\,\,\,\,when\,E_n\subset E_{n+1},n\geqslant 1 nlimEn=i=1EiwhenEnEn+1,n1If { E n , n ⩾ 1 } \left\{ E_n,n\geqslant 1 \right\} {En,n1} is a decreasing sequence of events, then we define a new event, denoted by lim ⁡ n → ∞ E n \underset{n\rightarrow \infty}{\lim}E_n nlimEn by lim ⁡ n → ∞ E n = ⋃ i = 1 ∞ E i     w h e n   E n ⊃ E n + 1 , n ⩾ 1 \underset{n\rightarrow \infty}{\lim}E_n=\bigcup_{i=1}^{\infty}{E_i}\,\,\, when\,E_n\supset E_{n+1},n\geqslant 1 nlimEn=i=1EiwhenEnEn+1,n1

1.4 Proposition 1

If { E n , n ⩾ 1 } \left\{ E_n,n\geqslant 1 \right\} {En,n1} is either an increasing or decreasing sequence of events, then lim ⁡ n → ∞ P ( E n ) = P ( lim ⁡ n → ∞ E n ) \underset{n\rightarrow \infty}{\lim}P\left( E_n \right) =P\left( \underset{n\rightarrow \infty}{\lim}E_n \right) nlimP(En)=P(nlimEn)

Proof   Suppose, first, that { E n , n ⩾ 1 } \left\{ E_n,n\geqslant 1 \right\} {En,n1} is an increasing sequence, and define events F n , n ⩾ 1 F_n, n\geqslant 1 Fn,n1 by F 1 = E 1 F n = E n ( ⋃ 1 n − 1 E i ) c = E n E n − 1 c ,     n > 1 \begin{aligned} F_1 &= E_1 \\ F_n &= E_n\left( \bigcup_1^{n-1}{E_i} \right) ^c = E_nE_{n-1}^{c},\,\ n>1 \end{aligned} F1Fn=E1=En(1n1Ei)c=EnEn1c, n>1 That is, F n F_n Fn consists of those points in E n E_n En that are not in any of the earlier E i , i < n E_i, i<n Ei,i<n It is easy to verify that the F n F_n Fn are mutually exclusive events such that ⋃ i = 1 ∞ F i = lim ⁡ n → ∞ E n      a n d      ⋃ i = 1 n F i = E n      f o r    a l l    n ⩾ 1. \bigcup_{i=1}^{\infty}{F_i=\underset{n\rightarrow \infty}{\lim}E_n\,\,\ and}\,\,\ \bigcup_{i=1}^n{F_i=E_n\,\,}\,for\,\,all\,\,n\geqslant 1. i=1Fi=nlimEn and i=1nFi=Enforalln1. Thus, lim ⁡ n → ∞ P ( E n ) = lim ⁡ n → ∞ P ( ⋃ 1 n F i )     ( f o r    t h e    d e f i n i t i o n    o f    e v e n t s    F ) = lim ⁡ n → ∞ ∑ 1 n P ( F i )     ( f o r    A x i o m    3 ) = ∑ 1 ∞ P ( F i ) = P ( ⋃ 1 ∞ F i ) = P ( lim ⁡ n → ∞ E n )     ( f o r    t h e    d e f i n a t i o n    o f    e v e n t s    F ) \begin{aligned} \underset{n\rightarrow \infty}{\lim}P\left( E_n \right) &=\underset{n\rightarrow \infty}{\lim}P\left( \bigcup_1^n{F_i} \right)\,\ \left( for\,\,the\,\,definition\,\,of\,\,events\,\,F \right) \\ &=\underset{n\rightarrow \infty}{\lim}\sum_1^n{P\left( F_i \right)}\,\ \left( for\,\,Axiom\,\,3 \right) \\ &=\sum_1^{\infty}{P\left( F_i \right)} \\ &=P\left( \bigcup_1^{\infty}{F_i} \right) \\ &=P\left( \underset{n\rightarrow \infty}{\lim}E_n \right)\,\ \left( for\,\,the\,\,defination\,\,of\,\,events\,\,F \right) \end{aligned} nlimP(En)=nlimP(1nFi) (forthedefinitionofeventsF)=nlim1nP(Fi) (forAxiom3)=1P(Fi)=P(1Fi)=P(nlimEn) (forthedefinationofeventsF) which proves the result when { E n , n ⩾ 1 } \left\{ E_n,n\geqslant 1 \right\} {En,n1} is increasing. Second, if { E n , n ⩾ 1 } \left\{ E_n,n\geqslant 1 \right\} {En,n1} is a decreasing sequence, then { E n c ,     n ⩾ 1 } \left\{ E^c_n, \,\ n\geqslant 1 \right\} {Enc, n1} is an increasing sequence, hence, lim ⁡ n → ∞ P ( E n c ) = P ( lim ⁡ n → ∞ E n c )    lim ⁡ n → ∞ [ 1 − P ( E n ) ] = P ( ⋃ i = 1 ∞ E i c )    ( f o r    t h e    d e f i n i t i o n    o f    i n c r e a sin ⁡ g    s e q u e n c e ) 1 − lim ⁡ n → ∞ P ( E n ) = P [ ( ⋂ i = 1 ∞ E i ) c ] = 1 − P ( ⋂ i = 1 ∞ E i ) = 1 − P ( E n ) ( f o r    t h e    d e f i n i t i o n    o f    d e c r e a sin ⁡ g    s e q u e n c e ) lim ⁡ n → ∞ P ( E n ) = P ( E n ) \begin{aligned} \underset{n\rightarrow \infty}{\lim}P\left( E_{n}^{c} \right) &=P\left( \underset{n\rightarrow \infty}{\lim}E_{n}^{c} \right) \,\, \\ \underset{n\rightarrow \infty}{\lim}\left[ 1-P\left( E_n \right) \right] &=P\left( \bigcup_{i=1}^{\infty}{E_{i}^{c}} \right) \,\,\left( for\,\,the\,\,definition\,\,of\,\,incre\text{a}\sin g\,\,sequence \right) \\ 1-\underset{n\rightarrow \infty}{\lim}P\left( E_n \right) &=P\left[ \left( \bigcap_{i=1}^{\infty}{E_i} \right) ^c \right] \\ &=1-P\left( \bigcap_{i=1}^{\infty}{E_i} \right) \\ &=1-P\left( E_n \right) \left (for\,\,the\,\,definition\,\,of\,\,decre\text{a}\sin g\,\,sequence \right) \\ \underset{n\rightarrow \infty}{\lim}P\left( E_n \right) &=P\left( E_n \right) \end{aligned} nlimP(Enc)nlim[1P(En)]1nlimP(En)nlimP(En)=P(nlimEnc)=P(i=1Eic)(forthedefinitionofincreasingsequence)=P[(i=1Ei)c]=1P(i=1Ei)=1P(En)(forthedefinitionofdecreasingsequence)=P(En) which proves the result.

1.4 Proposition 2 The Borel-Cantelli Lemma

Let E 1 E_1 E1, E 2 E_2 E2, … denote a sequence of events. If ∑ i = 1 ∞ P ( E i ) < ∞ \sum_{i=1}^{\infty}{P\left( E_i \right)}<\infty i=1P(Ei)< then, P { a n    i n f i n i t e    n u m b e r    o f    t h e    E i    o c c u r } = 0 P\left\{ an\,\,infinite\,\,number\,\,of\,\,the\,\,E_i\,\,occur \right\} =0 P{aninfinitenumberoftheEioccur}=0

Proof The event that an infinite number of the E i E_i Ei occur, called the lim ⁡ s u p i → ∞ E i \underset{i\rightarrow \infty}{\lim sup}E_i ilimsupEi, can be expressed as lim ⁡ s u p i → ∞ E i = ⋂ n = 1 ∞ ⋃ i = n ∞ E i \underset{i\rightarrow \infty}{\lim sup}E_i = \bigcap_{n=1}^{\infty}{\bigcup_{i=n}^{\infty}{E_i}} ilimsupEi=n=1i=nEi As { ⋃ i = n ∞ E i , n ⩾ 1 } \left\{ \bigcup_{i=n}^{\infty}{E_i}, n \geqslant 1 \right\} {i=nEi,n1} is a decreasing sequence of events, it follows from Proposition 1 that P ( ⋂ n = 1 ∞ ⋃ i = n ∞ E i ) = P ( lim ⁡ n → ∞ ⋃ i = n ∞ E i )    ( f o r    t h e    d e f i n i t i o n    o f    d e c r e a sin ⁡ g    e v e n t s ) = lim ⁡ n → ∞ P ( ⋃ i = n ∞ E i )    ( f o r    t h e    p r o p o s i t i o n    1 ) ⩽ lim ⁡ n → ∞ ∑ i = n ∞ P ( E i )    ( f o r    t h e    c o n s e q u e n c e    4 ) = 0 \begin{aligned} P\left( \bigcap_{n=1}^{\infty}{\bigcup_{i=n}^{\infty}{E_i}} \right) & =P\left( \underset{n\rightarrow \infty}{\lim}\bigcup_{i=n}^{\infty}{E_i} \right) \,\, \left( for\,\,the\,\,definition\,\,of\,\,decre\text{a}\sin g\,\,events \right) \\ & =\underset{n\rightarrow \infty}{\lim}P\left( \bigcup_{i=n}^{\infty}{E_i} \right) \,\, \left( for\,\,the\,\,proposition\,\,1 \right) \\ & \leqslant \underset{n\rightarrow \infty}{\lim}\sum_{i=n}^{\infty}{P\left( E_i \right)}\,\, \left( for\,\,the\,\,consequence\,\,4 \right) \\ & =0 \end{aligned} P(n=1i=nEi)=P(nlimi=nEi)(forthedefinitionofdecreasingevents)=nlimP(i=nEi)(fortheproposition1)nlimi=nP(Ei)(fortheconsequence4)=0 and then result is proven.

1.5 Proposition 3 Converse of the Borel-Cantelli Lemma

If E 1 E_1 E1, E 2 E_2 E2, … are indenpent events such that ∑ i = 1 ∞ P ( E i ) = ∞ \sum_{i=1}^{\infty}{P\left( E_i \right)}=\infty i=1P(Ei)= then P { a n    i n f i n i t e    n u m b e r    o f    t h e    E i    o c c u r } = 1 P\left\{ an\,\,infinite\,\,number\,\,of\,\,the\,\,E_i\,\,occur \right\} = 1 P{aninfinitenumberoftheEioccur}=1

Proof P ( ⋂ n = 1 ∞ ⋃ i = n ∞ E i ) = P ( lim ⁡ n → ∞ ⋃ i = n ∞ E i )    ( f o r    t h e    d e f i n i t i o n    o f    d e c r e a sin ⁡ g    e v e n t s ) = lim ⁡ n → ∞ P ( ⋃ i = n ∞ E i )    ( f o r    t h e    p r o p o s i t i o n    1 ) = lim ⁡ n → ∞ [ 1 − P ( ⋂ i = n ∞ E i c ) ]    ( T i c k    S t e p ) = 1 − lim ⁡ n → ∞ P ( ⋂ i = n ∞ E i c ) \begin{aligned}P\left( \bigcap_{n=1}^{\infty}{\bigcup_{i=n}^{\infty}{E_i}} \right) & =P\left( \underset{n\rightarrow \infty}{\lim}\bigcup_{i=n}^{\infty}{E_i} \right) \,\, \left( for\,\,the\,\,definition\,\,of\,\,decre\text{a}\sin g\,\,events \right) \\ & =\underset{n\rightarrow \infty}{\lim}P\left( \bigcup_{i=n}^{\infty}{E_i} \right) \,\, \left( for\,\,the\,\,proposition\,\,1 \right) \\ & =\underset{n\rightarrow \infty}{\lim}\left[ 1-P\left( \bigcap_{i=n}^{\infty}{E_{i}^{c}} \right) \right] \,\,\left( Tick\,\,Step \right) \\ & =1-\underset{n\rightarrow \infty}{\lim}P\left( \bigcap_{i=n}^{\infty}{E_{i}^{c}} \right)\end{aligned} P(n=1i=nEi)=P(nlimi=nEi)(forthedefinitionofdecreasingevents)=nlimP(i=nEi)(fortheproposition1)=nlim[1P(i=nEic)](TickStep)=1nlimP(i=nEic)now, lim ⁡ n → ∞ P ( ⋂ i = n ∞ E i c ) = ∏ i = n ∞ P ( E i c )    ( b y    i n d e p e d e n c e ) = ∏ i = n ∞ [ 1 − P ( E i ) ] ⩽ ∏ i = n ∞ e − P ( E i )    ( b y    t h e    i n e q u a l i t y    1 − x ⩽ e − x ) = e − ∑ n ∞ P ( E i ) = 0 ( f o r    t h e    p r i m a r y    c o n d i t i o n ) \begin{aligned}\underset{n\rightarrow \infty}{\lim}P\left( \bigcap_{i=n}^{\infty}{E_{i}^{c}} \right) & =\prod_{i=n}^{\infty}{P\left( E_{i}^{c} \right)}\,\,\left( by\,\,indepedence \right) \\ & =\prod_{i=n}^{\infty}{\left[ 1-P\left( E_i \right) \right]} \\ & \leqslant \prod_{i=n}^{\infty}{e^{^{-P\left( E_i \right)}}}\,\,\left( by\,\,the\,\,inequality\,\,1-x\leqslant e^{-x} \right) \\ & =\text{e}^{-\sum_n^{\infty}{P\left( E_i \right)}} \\ & =0 \left( for\,\,the\,\,primary\,\,condition \right) \end{aligned} nlimP(i=nEic)=i=nP(Eic)(byindepedence)=i=n[1P(Ei)]i=neP(Ei)(bytheinequality1xex)=enP(Ei)=0(fortheprimarycondition) Hence the result follows.

最新回复(0)