Chunping Qiu等,使用LCZ42数据集中的Sentinel-2数据,提出Sen2LCZ-Net-MF,对不同的网络训练结果进行了比较,ResNet、DenseNet、VGG16、Xception,Sen2LCZ-Net-MF结果指标最好
C. Qiu, X. Tong, M. Schmitt, B. Bechtel and X. X. Zhu, “Multilevel Feature Fusion-Based CNN for Local Climate Zone Classification From Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42 Dataset,” in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 2793-2806, 2020, doi: 10.1109/JSTARS.2020.2995711.
Yang等,使用LCZ42数据集中的Sentinel-2影像,提出以DenseNet为基本结构的MSPPF-Nets,分类精度有所提升
Yang R , Zhang Y , Zhao P , et al. MSPPF-Nets: A Deep Learning Architecture for Remote Sensing Image Classification[C]// IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019.
YOO等,将CNN与RF进行比较,对Landsat8进行分类
Yoo C , Han D , Im J , et al. Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 157(Nov.):155-170.
Qiu,融合多个季节的sentinel-2影像,ResNet
Qiu, Chunping & Schmitt, Michael & Zhu, Xiao. (2019). Fusing Multi-Seasonal Sentinel-2 Images with Residual Convolutional Neural Networks for Local Climate Zone-Derived Urban Land Cover Classification. 5037-5040. 10.1109/IGARSS.2019.8898223.
Rosentreter等,Sentinel-2影像,CNN与RF比较
Rosentreter J , Hagensieker R , Waske B . Towards large-scale mapping of local climate zones using multitemporal Sentinel 2 data and convolutional neural networks[J]. Remote Sensing of Environment, 2020, 237:111472.
Liu等,将LCZ分类视为场景分类问题,选择中国的15个城市作为研究区域,残差学习与SE模块结合,提出LCZNet,分析了影像块尺寸对训练结果的影响
Liu S , Shi Q . Local climate zone mapping as remote sensing scene classification using deep learning: A case study of metropolitan China[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164:229-242.
Jing Hao,使用SAR与多光谱影像,sentinel-1和sentinel-2,使用ResNeXT,结果说明加入SAR影像精度也只有微小的提高。
Jing H , Feng Y , Zhang W , et al. Effective Classification of Local Climate Zones Based on Multi-Source Remote Sensing Data[C]// IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019.
Feng等,基于DenseNet的双分支CNN,使用SAR和多光谱影像,考虑到SAR与多光谱影像的成像机制不同,在不同分支内进行特征提取
链接: link. 大概就是建了一个韩国的分类数据集
