GB算法与Boosting算法区别
Boosting算法:开始时给每个样本附上权重的,在每次迭代的时候就会增加错的样本的权重,减少对的样本的权重,经过N次迭代之后,会得到N个分类器,然后我们再将他们组合起来,得到最终模型。
GB算法:每一次迭代的目标都是减少上一次的残差,所以在残差减少的方向上建立一个新的模型。在GB算法框架上加入决策树,就是GBDT(GradientBoost Decision Tree)算法。
偏差和方差的区别
偏差:描述的是预测值(估计值)的期望与真实值之间的差距。偏差越大,越偏离真实数据,如下图第二行所示。 方差:描述的是预测值的变化范围,离散程度,也就是离其期望值的距离。方差越大,数据的分布越分散,如下图右列所示。