本文是博主自身对AC自动机的原理的一些理解和看法,主要以举例的方式讲解,同时又配以相应的图片。代码实现部分也予以明确的注释,希望给大家不一样的感受。AC自动机主要用于多模式字符串的匹配,本质上是KMP算法的树形扩展。这篇文章主要介绍AC自动机的工作原理,并在此基础上用Java代码实现一个简易的AC自动机。
欢迎探讨,如有错误敬请指正
我们现在考虑这样一个问题,在一个文本串text中,我们想找出多个目标字符串target1,target2,……出现的次数和位置。例如:求出目标字符串集合{"nihao","hao","hs","hsr"}在给定文本sdmfhsgnshejfgnihaofhsrnihao中所有可能出现的位置。解决这个问题,我们一般的办法就是在文本串中对每个目标字符串单独查找,并记录下每次出现的位置。显然这样的方式能够解决问题,但是在文本串较大、目标字符串众多的时候效率比较低。为了提高效率,贝尔实验室于1975年发明著名的多模字符串匹配算法——AC自动机。AC自动机在实现上要依托于Trie树(也称字典树)并借鉴了KMP模式匹配算法的核心思想。实际上你可以把KMP算法看成每个节点都仅有一个孩子节点的AC自动机。
AC自动机的基础是Trie树。和Trie树不同的是,树中的每个结点除了有指向孩子的指针(或者说引用),还有一个fail指针,它表示输入的字符与当前结点的所有孩子结点都不匹配时(注意,不是和该结点本身不匹配),自动机的状态应转移到的状态(或者说应该转移到的结点)。fail指针的功能可以类比于KMP算法中next数组的功能。
我们现在来看一个用目标字符串集合{abd,abdk, abchijn, chnit, ijabdf, ijaij}构造出来的AC自动机 上图是一个构建好的AC自动机,其中根结点不存储任何字符,根结点的fail指针为null。虚线表示该结点的fail指针的指向,所有表示字符串的最后一个字符的结点外部都用红圈表示,我们称该结点为这个字符串的终结结点。每个结点实际上都有fail指针,但为了表示方便,本文约定一个原则,即所有指向根结点的 fail虚线都未画出。
从上图中的AC自动机,我们可以看出一个重要的性质:每个结点的fail指针表示由根结点到该结点所组成的字符序列的所有后缀 和 整个目标字符串集合(也就是整个Trie树)中的所有前缀 两者中最长公共的部分。
比如图中,由根结点到目标字符串ijabdf中的 d组成的字符序列ijabd的所有后缀在整个目标字符串集{abd,abdk, abchijn, chnit, ijabdf, ijaij}的所有前缀中最长公共的部分就是abd,而图中d结点(字符串ijabdf中的这个d)的fail正是指向了字符序列abd的最后一个字符。
现在,我们来一个具体的例子加深理解,初始时当前结点为root结点,我们现在假设文本串text = “abchnijabdfk”。 图中的实曲线表示了整个搜索过程中的当前结点指针的转移过程,结点旁的文字表示了当前结点下读取的文本串字符。比如初始时,当前指针指向根结点时,输入字符a,则当前指针指向结点a,此时再输入字符b,自动机状态转移到结点b,……,以此类推。图中AC自动机的最后状态只是恰好回到根结点。
需要说明的是,当指针位于结点b(图中曲线经过了两次b,这里指第二次的b,即目标字符串ijabdf中的b),这时读取文本串字符下标为9的字符(即d)时,由于b的所有孩子结点(这里恰好只有一个孩子结点)中存在能够匹配输入字符d的结点,那么当前结点指针就指向了结点d,而此时该结点d的fail指针指向的结点又恰好表示了字符串abc的终结结点(用红圈表示),所以我们找到了目标字符串abc一次。这个过程我们在图中用虚线表示,但状态没有转移到abd中的d结点。
在输入完所有文本串字符后,我们在文本串中找到了目标字符串集合中的abd一次,位于文本串中下标为7的位置;目标字符串ijabdf一次,位于文本串中下标为5的位置。
首先我们将所有的目标字符串插入到Trie树中,然后通过广度优先遍历为每个结点的所有孩子节点的fail指针找到正确的指向。 确定fail指针指向的问题和KMP算法中构造next数组的方式如出一辙。具体方法如下
1)将根结点的所有孩子结点的fail指向根结点,然后将根结点的所有孩子结点依次入列。
2)若队列不为空:
2.1)出列,我们将出列的结点记为curr, failTo表示curr的fail指向的结点,即failTo = curr.fail
2.2) a.判断curr.child[i] == failTo.child[i]是否成立, 成立:curr.child[i].fail = failTo.child[i], 不成立:判断 failTo == null是否成立 成立: curr.child[i].fail == root 不成立:执行failTo = failTo.fail,继续执行2.2) b.curr.child[i]入列,再次执行再次执行步骤2)
若队列为空:结束
每个结点fail指向的解决顺序是按照广度优先遍历的顺序完成的,或者说层序遍历的顺序进行的,也就是说我们是在解决当前结点的孩子结点fail的指向时,当前结点的fail指针一定已指向了正确的位置。 为了说明问题,我们再次强调“每个结点的fail指针表示:由根结点到该结点所组成的字符序列的所有后缀 和 整个目标字符串集合(也就是整个Trie树)中的所有前缀 两者中最长公共的部分”。
以上图所示为例,我们要解决结点x1的某个孩子结点y的fail的指向问题。已知x1.fail指向x2,依据x1结点的fail指针的含义,我们可知红色实线椭圆框内的字符序列必然相等,且表示了最长公共部分。依据y.fail的含义,如果x2的某个孩子结点和结点y表示的字符相等,那么y.fail就该指向它。
如果x2的孩子结点中不存在结点y表示的字符,这个时候该怎么办?由于x2.fail指向x3,根据x2.fail的含义,我们可知绿色方框内的字符序列必然相等。显然,如果x3的某个孩子结点和结点y表示的字符相等,那么y.fail就该指向它。
如果x3的孩子结点中不存在结点y表示的字符,我们可以依次重复这个步骤,直到xi结点的fail指向null,这时说明我们已经到了最顶层的根结点,这时,我们只需要让y.fail = root即可。
构造的过程的核心本质就是,已知当前结点的最长公共前缀的前提下,去确定孩子结点的最长公共前缀。这完全可以类比于KMP算法的next数组的求解过程。
现在我们假设我们要确定图中结点c的孩子结点h的fail指向。图中每个结点都应该有表示fail的虚线,但为了表示方便,按照本文约定的原则,所有指向根结点的 fail虚线均未画出。 左图表示h.fail确定之前, 右图表示h.fail确定之后 左图中,蓝色实线框住的结点的fail都已确定。现在我们应该怎样找到h.fail的正确指向?由于且结点c的fail已知(c结点为h结点的父结点),且指向了Trie树中所有前缀与字符序列‘a’‘b’‘c’的所有后缀(“bc”和“c”)的最长公共部分。现在我们要解决的问题是目标字符串集合的所有前缀中与字符序列‘a’‘b’‘c’ ‘h’的所有后缀的最长公共部分。显然c.fail指向的结点的孩子结点中存在结点h,那么h.fail就应该指向c.fail的孩子结点h,所以右图表示了h.fail确定后的情况。
左图表示i.fail确定之前, 右图表示i.fail确定之后 确定i.fail的指向时,显然h.fail(h指图中i的父结点的那个h)已指向了正确的位置。也就是说我们现在知道了目标字符串集合所有前缀中与字符序列‘a’‘b’‘c’ ‘h’的所有后缀在Trie树中的最长前缀是‘c’‘h’。显然从图中可知h.fail的孩子结点是没有i结点(这里h.fail只有一个孩子结点n)。字符序列‘c’‘h’的所有后缀在Trie树中的最长前缀可由h.fail的fail得到,而h.fail的fail指向root(依据本博客中画图的原则,这条fail虚线并未画出),root的孩子结点中存在表示字符i的结点,所以结果如右图所示。
在知道i.fail的情况下,大家可以尝试在纸上画出j.fail的指向,以加深AC自动机构造过程的理解。
运行结果如下,从结果中我们可以看出文本串中bcd出现了二次,分别是文本串下标为3和下标为13的位置,……。
bcabcdebcedfabcdefababkabhabk bcd : [3, 13] cdfkcdf : [] cde : [4, 14] abcdef : [12] abhab : [23][1] AC自动机算法
AC自动机维基百科
原文地址: https://www.cnblogs.com/nullzx/p/7499397.html