Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n−1)!∀n∈N 是通过 Euler integral
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.Γ(z)=∫0∞tz−1e−tdt.Γ(z)=∫0∞tz−1e−tdt.Γ(z)=∫0∞tz−1e−tdt.Γ(z)=∫0∞tz−1e−tdt. adsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsdadsfasdfasdfasdfasdfasdfasdfasdfsd Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\, \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.Γ(z)=∫0∞tz−1e−tdtΓ(z)=∫0∞tz−1e−tdt.Γ(z)=∫0∞tz−1e−tdt.Γ(z)=∫0∞tz−1e−tdt.
兔子兔兔兔 2121 21 nux kdj 1111