微信公众号: 点击蓝色字体小白图像与视觉进行关注
关于技术、关注yysilence00。有问题或建议,请公众号留言
步骤为:
归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。
#!/usr/bin/env python3.6.5# -*- coding: UTF-8 -*-"""Author: yanyongDate: 2020/10/2 20:34docs:"""def merge_sort(alist): """归并排序""" n = len(alist) if n <= 1: return alist mid = n//2 # left 采用归并排序后形成的有序的新的列表 left_li = merge_sort(alist[:mid]) # right 采用归并排序后形成的有序的新的列表 right_li = merge_sort(alist[mid:]) # 将两个有序的子序列合并为一个新的整体 # merge(left, right) left_pointer, right_pointer = 0, 0 result = [] while left_pointer < len(left_li) and right_pointer < len(right_li): if left_li[left_pointer] <= right_li[right_pointer]: result.append(left_li[left_pointer]) left_pointer += 1 else: result.append(right_li[right_pointer]) right_pointer += 1 result += left_li[left_pointer:] result += right_li[right_pointer:] return resultif __name__ == "__main__": li = [54, 26, 93, 17, 77, 31, 44, 55, 20] print(li) sorted_li = merge_sort(li) print(li) print(sorted_li)时间复杂度最优时间复杂度:O(nlogn)最坏时间复杂度:O(n2)稳定性:不稳定从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。
在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间
更多请扫码关注: