先看伟大的高斯分布(Gaussian Distribution)的概率密度函数(probability density function):
f(x)=12π‾‾‾√σexp(−(x−μ)22σ2)f(x)=12πσexp(−(x−μ)22σ2)
对应于numpy中:
numpy.random.normal(loc=0.0, scale=1.0, size=None)
参数的意义为:
loc:float 此概率分布的均值(对应着整个分布的中心centre) scale:float 此概率分布的标准差(对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高) size:int or tuple of ints 输出的shape,默认为None,只输出一个值
我们更经常会用到的np.random.randn(size)所谓标准正态分布(μ=0,σ=1μ=0,σ=1),对应于np.random.normal(loc=0, scale=1, size)。
也可使用scipy库中的相关api(这里的类与函数更符合数理统计中的直觉):
import scipy.stats as st mu, sigma = 0, .1 s = st.norm(mu, sigma).rvs(1000)
我们看使用matplotlib.pyplot便捷而强大的语法如何进行高斯分布的拟合:
import matplotlib.pyplot as plt count, bins, _ = plt.hist(s, 30, normed=True) # normed是进行拟合的关键 # count统计某一bin出现的次数,在Normed为True时,可能其值会略有不同 plt.plot(bins, 1./(np.sqrt(2*np.pi)*sigma)*np.exp(-(bins-mu)**2/(2*sigma**2), lw=2, c='r') plt.show()或者:
s_fit = np.linspace(s.min(), s.max()) plt.plot(s_fit, st.norm(mu, sigma).pdf(s_fit), lw=2, c='r')