剑指 Offer 03. 数组中重复的数字【原地置换时间O(N)空间O(1)】

it2025-08-06  4

题目描述:

在一个长度为 n 的数组 nums 里的所有数字都在 0~n-1 的范围内。数组中某些数字是重复的,但不知道有几个数字重复了,也不知道每个数字重复了几次。请找出数组中任意一个重复的数字。

普通做法: 排序

时间复杂度:O(nlogn)

空间复杂度:O(1)

优先考虑时间:哈希

可以用数组,或者map,或者任何哈希的东西。

时间复杂度:O(n)

空间复杂度:O(n)

class Solution { public: int findRepeatNumber(vector<int>& nums) { map<int,int> a; for (int i=0; i<nums.size(); i++){ if (a[nums[i]]==0) a[nums[i]]++; else return nums[i]; } return -1; } };

优先考虑空间: 原地置换排序

利用长度为 n 的数组 nums 里的所有数字都在 0~n-1 的范围内这个特点,对原数组进行排序,这样使得空间占用O(1)。

有一个原地置换算法,挺有意思,有人说其时间复杂度为O(n),没有找到合适的证明。

通俗的理解就是对于一个数字,可能交换很多次,但是在过程中,他们是一直在向着有序发展,并且一旦找对了自己的位置,就不再改变,所以常数大,但是O(n)。

流程:对于位置不对的数字,交换。交换前先判断要交换的两个数字是否相等,若是相等,那么找到答案,或是不相等交换。这个位置正确后,继续查看下一个位置。

class Solution { public: int findRepeatNumber(vector<int>& nums) { for (int i=0; i<nums.size(); i++){ while (nums[i]!=i) { if (nums[i]==nums[nums[i]]) return nums[i]; swap(nums[i],nums[nums[i]]); } } return -1; } };

 

最新回复(0)