Synchronized HotSpot底层实现-CAS + Unsafe类 + Synchronized锁升级

it2025-06-26  7

文章目录

用户态与内核态CASUnsafe与原子类markword工具:JOL = Java Object Layoutsynchronized的横切面详解java源码层级字节码层级JVM层级(Hotspot) 锁升级过程JDK8 markword实现表:锁重入synchronized最底层实现synchronized vs Lock (CAS) 锁消除 lock eliminate锁粗化 lock coarsening参考资料 说明:JVM并没有规定Synchronized应该怎么实现,这里说的是基于HotSpot的实现

用户态与内核态

JDK早期,synchronized 叫做重量级锁, 因为申请锁资源必须通过kernel, 系统调用

;hello.asm ;write(int fd, const void *buffer, size_t nbytes) section data msg db "Hello", 0xA len equ $ - msg section .text global _start _start: mov edx, len mov ecx, msg mov ebx, 1 ;文件描述符1 std_out mov eax, 4 ;write函数系统调用号 4 int 0x80 mov ebx, 0 mov eax, 1 ;exit函数系统调用号 int 0x80

CAS


Compare And Swap(Set) (Compare And Exchange)又被称为: 自旋 / 自旋锁 / 无锁 (无重量锁)

因为经常配合循环操作,直到完成为止,所以泛指一类操作

cas(V, Expected, NewValue) ,变量V,期待值Expected, 修改值NewValue if (v == a){ v = b } else{ try again or fail }

CAS操作得到了CPU的原语支持,也就是说CAS操作是CPU指令级别的操作,它中途是不可能被打断的

ABA问题,也就是原来a=1,之后有一个线程把它改成了 a=2,之后又把它改回成1;对于int类型肯定对结果无伤大雅,但是有一些数据结构不行,比如说对象,这可能会导致错误的结果,

解决办法:加一个版本号 (AtomicStampedReference),在这个对象做任何修改之前就改一下它的版本号,在if判断的时候连同版本号一起检查,比如版本好递增1。当然基础类型简单值不需要版本号,因为它们对结果没有影响。有影响就加一个版本号

CAS操作根本没有用到锁,就完成了锁的功能,但是它付出的代价就是占用CPU的资源,所以在原子类,轻量级锁等地方用到的都是CAS操作

Unsafe与原子类


所有的原子类的操作都是使用的Unsafe中的CompareAndSwap方法,这个方法的原理就是上面所说的CAS操作的原理,而这个方法是Unsafe这个类里面的。所以原子类的底层原理就是CAS

unsafe类是用来直接操作JVM里面的内存。比如要修改一个对象的属性,是直接通过偏移量在找到这块内存,直接修改。再比如我们可以调用Unsafe类的allocateMemory来分配指定大小的内存,之前的java可是没有这个功能的。这个只有在c,c++里面有

这个类了解就好,它里面又很多的方法,在JDK8之前,我们这些普通的用户是不能直接使用这个类,这个类是给那些JDK的作者来使用,我们必须通过反射来使用。但在之后的版本,Unsafe类提供了懒汉式的单例,使得我们可以直接拿到它。

AtomicInteger:

public final int incrementAndGet() { for (;;) { int current = get(); int next = current + 1; if (compareAndSet(current, next)) return next; } } public final boolean compareAndSet(int expect, int update) { return unsafe.compareAndSwapInt(this, valueOffset, expect, update); }

Unsafe:

public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);

运用:

package com.mashibing.jol; import sun.misc.Unsafe; import java.lang.reflect.Field; public class T02_TestUnsafe { int i = 0; private static T02_TestUnsafe t = new T02_TestUnsafe(); public static void main(String[] args) throws Exception { //Unsafe unsafe = Unsafe.getUnsafe(); Field unsafeField = Unsafe.class.getDeclaredFields()[0]; unsafeField.setAccessible(true); Unsafe unsafe = (Unsafe) unsafeField.get(null); Field f = T02_TestUnsafe.class.getDeclaredField("i"); long offset = unsafe.objectFieldOffset(f); System.out.println(offset); boolean success = unsafe.compareAndSwapInt(t, offset, 0, 1); System.out.println(success); System.out.println(t.i); //unsafe.compareAndSwapInt() } }

jdk8u: unsafe.cpp:

cmpxchg = compare and exchange

UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) UnsafeWrapper("Unsafe_CompareAndSwapInt"); oop p = JNIHandles::resolve(obj); jint* addr = (jint *) index_oop_from_field_offset_long(p, offset); return (jint)(Atomic::cmpxchg(x, addr, e)) == e; UNSAFE_END

jdk8u: atomic_linux_x86.inline.hpp 93行

is_MP = Multi Processor

inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) { int mp = os::is_MP(); __asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)" : "=a" (exchange_value) : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp) : "cc", "memory"); return exchange_value; }

jdk8u: os.hpp is_MP()

static inline bool is_MP() { // During bootstrap if _processor_count is not yet initialized // we claim to be MP as that is safest. If any platform has a // stub generator that might be triggered in this phase and for // which being declared MP when in fact not, is a problem - then // the bootstrap routine for the stub generator needs to check // the processor count directly and leave the bootstrap routine // in place until called after initialization has ocurred. return (_processor_count != 1) || AssumeMP; }

jdk8u: atomic_linux_x86.inline.hpp

#define LOCK_IF_MP(mp) "cmp $0, " #mp "; je 1f; lock; 1: "

最终实现:

cmpxchg = cas修改变量值

lock cmpxchg 指令

硬件:

lock指令在执行后面指令的时候锁定一个北桥信号

(不采用锁总线的方式)

markword

工具:JOL = Java Object Layout

<dependencies> <!-- https://mvnrepository.com/artifact/org.openjdk.jol/jol-core --> <dependency> <groupId>org.openjdk.jol</groupId> <artifactId>jol-core</artifactId> <version>0.9</version> </dependency> </dependencies>

jdk8u: markOop.hpp

// Bit-format of an object header (most significant first, big endian layout below): // // 32 bits: // -------- // hash:25 ------------>| age:4 biased_lock:1 lock:2 (normal object) // JavaThread*:23 epoch:2 age:4 biased_lock:1 lock:2 (biased object) // size:32 ------------------------------------------>| (CMS free block) // PromotedObject*:29 ---------->| promo_bits:3 ----->| (CMS promoted object) // // 64 bits: // -------- // unused:25 hash:31 -->| unused:1 age:4 biased_lock:1 lock:2 (normal object) // JavaThread*:54 epoch:2 unused:1 age:4 biased_lock:1 lock:2 (biased object) // PromotedObject*:61 --------------------->| promo_bits:3 ----->| (CMS promoted object) // size:64 ----------------------------------------------------->| (CMS free block) // // unused:25 hash:31 -->| cms_free:1 age:4 biased_lock:1 lock:2 (COOPs && normal object) // JavaThread*:54 epoch:2 cms_free:1 age:4 biased_lock:1 lock:2 (COOPs && biased object) // narrowOop:32 unused:24 cms_free:1 unused:4 promo_bits:3 ----->| (COOPs && CMS promoted object) // unused:21 size:35 -->| cms_free:1 unused:7 ------------------>| (COOPs && CMS free block)

synchronized的横切面详解

synchronized原理升级过程汇编实现vs reentrantLock的区别

java源码层级

synchronized(o)

字节码层级

monitorenter moniterexit

JVM层级(Hotspot)

package com.mashibing.insidesync; import org.openjdk.jol.info.ClassLayout; public class T01_Sync1 { public static void main(String[] args) { Object o = new Object(); System.out.println(ClassLayout.parseInstance(o).toPrintable()); } } com.mashibing.insidesync.T01_Sync1$Lock object internals: OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 00 00 00 (00000101 00000000 00000000 00000000) (5) 4 4 (object header) 00 00 00 00 (00000000 00000000 00000000 00000000) (0) 8 4 (object header) 49 ce 00 20 (01001001 11001110 00000000 00100000) (536923721) 12 4 (loss due to the next object alignment) Instance size: 16 bytes Space losses: 0 bytes internal + 4 bytes external = 4 bytes total com.mashibing.insidesync.T02_Sync2$Lock object internals: OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 90 2e 1e (00000101 10010000 00101110 00011110) (506368005) 4 4 (object header) 1b 02 00 00 (00011011 00000010 00000000 00000000) (539) 8 4 (object header) 49 ce 00 20 (01001001 11001110 00000000 00100000) (536923721) 12 4 (loss due to the next object alignment) Instance size: 16 bytes Space losses: 0 bytes internal + 4 bytes external = 4 bytes tota

InterpreterRuntime:: monitorenter方法

IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem)) #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif if (PrintBiasedLockingStatistics) { Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); } Handle h_obj(thread, elem->obj()); assert(Universe::heap()->is_in_reserved_or_null(h_obj()), "must be NULL or an object"); if (UseBiasedLocking) { // Retry fast entry if bias is revoked to avoid unnecessary inflation ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK); } else { ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK); } assert(Universe::heap()->is_in_reserved_or_null(elem->obj()), "must be NULL or an object"); #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif IRT_END

synchronizer.cpp

revoke_and_rebias

void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) { if (UseBiasedLocking) { if (!SafepointSynchronize::is_at_safepoint()) { BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD); if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) { return; } } else { assert(!attempt_rebias, "can not rebias toward VM thread"); BiasedLocking::revoke_at_safepoint(obj); } assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now"); } slow_enter (obj, lock, THREAD) ; } void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) { markOop mark = obj->mark(); assert

inflate方法:膨胀为重量级锁

锁升级过程

JDK8 markword实现表:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CS8a4cXB-1603325999235)(.\lock_step.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9aeREjvQ-1603325999242)(.\markword-64.png)]

为什么有自旋锁还需要重量级锁?

自旋是消耗CPU资源的,如果锁的时间长,或者自旋线程多,CPU会被大量消耗

重量级锁有等待队列,所有拿不到锁的进入等待队列,不需要消耗CPU资源

偏向锁是否一定比自旋锁效率高?

不一定,在明确知道会有多线程竞争的情况下,偏向锁肯定会涉及锁撤销,这时候直接使用自旋锁

JVM启动过程,会有很多线程竞争(明确),所以默认情况启动时不打开偏向锁,过一段儿时间再打开

new - 偏向锁 - 轻量级锁 (无锁, 自旋锁,自适应自旋)- 重量级锁

synchronized优化的过程和markword息息相关

用markword中最低的三位代表锁状态 其中1位是偏向锁位 两位是普通锁位

Object o = new Object() 锁 = 0 01 无锁态 注意:如果偏向锁打开,默认是匿名偏向状态

o.hashCode() 001 + hashcode

00000001 10101101 00110100 00110110 01011001 00000000 00000000 00000000

little endian big endian

00000000 00000000 00000000 01011001 00110110 00110100 10101101 00000000

默认synchronized(o) 00 -> 轻量级锁 默认情况 偏向锁有个时延,默认是4秒 why? 因为JVM虚拟机自己有一些默认启动的线程,里面有好多sync代码,这些sync代码启动时就知道肯定会有竞争,如果使用偏向锁,就会造成偏向锁不断的进行锁撤销和锁升级的操作,效率较低。

-XX:BiasedLockingStartupDelay=0

如果设定上述参数 new Object () - > 101 偏向锁 ->线程ID为0 -> Anonymous BiasedLock 打开偏向锁,new出来的对象,默认就是一个可偏向匿名对象101

如果有线程上锁 上偏向锁,指的就是,把markword的线程ID改为自己线程ID的过程 偏向锁不可重偏向 批量偏向 批量撤销

如果有线程竞争 撤销偏向锁,升级轻量级锁 线程在自己的线程栈生成LockRecord ,用CAS操作将markword设置为指向自己这个线程的LR的指针,设置成功者得到锁

如果竞争加剧 竞争加剧:有线程超过10次自旋, -XX:PreBlockSpin, 或者自旋线程数超过CPU核数的一半, 1.6之后,加入自适应自旋 Adapative Self Spinning , JVM自己控制 升级重量级锁:-> 向操作系统申请资源,linux mutex , CPU从3级-0级系统调用,线程挂起,进入等待队列,等待操作系统的调度,然后再映射回用户空间

(以上实验环境是JDK11,打开就是偏向锁,而JDK8默认对象头是无锁)

偏向锁默认是打开的,但是有一个时延,如果要观察到偏向锁,应该设定参数

如果计算过对象的hashCode,则对象无法进入偏向状态!

轻量级锁重量级锁的hashCode存在与什么地方?

答案:线程栈中,轻量级锁的LR中,或是代表重量级锁的ObjectMonitor的成员中

关于epoch: (不重要)

批量重偏向与批量撤销渊源:从偏向锁的加锁解锁过程中可看出,当只有一个线程反复进入同步块时,偏向锁带来的性能开销基本可以忽略,但是当有其他线程尝试获得锁时,就需要等到safe point时,再将偏向锁撤销为无锁状态或升级为轻量级,会消耗一定的性能,所以在多线程竞争频繁的情况下,偏向锁不仅不能提高性能,还会导致性能下降。于是,就有了批量重偏向与批量撤销的机制。

原理以class为单位,为每个class维护解决场景批量重偏向(bulk rebias)机制是为了解决:一个线程创建了大量对象并执行了初始的同步操作,后来另一个线程也来将这些对象作为锁对象进行操作,这样会导致大量的偏向锁撤销操作。批量撤销(bulk revoke)机制是为了解决:在明显多线程竞争剧烈的场景下使用偏向锁是不合适的。

一个偏向锁撤销计数器,每一次该class的对象发生偏向撤销操作时,该计数器+1,当这个值达到重偏向阈值(默认20)时,JVM就认为该class的偏向锁有问题,因此会进行批量重偏向。每个class对象会有一个对应的epoch字段,每个处于偏向锁状态对象的Mark Word中也有该字段,其初始值为创建该对象时class中的epoch的值。每次发生批量重偏向时,就将该值+1,同时遍历JVM中所有线程的栈,找到该class所有正处于加锁状态的偏向锁,将其epoch字段改为新值。下次获得锁时,发现当前对象的epoch值和class的epoch不相等,那就算当前已经偏向了其他线程,也不会执行撤销操作,而是直接通过CAS操作将其Mark Word的Thread Id 改成当前线程Id。当达到重偏向阈值后,假设该class计数器继续增长,当其达到批量撤销的阈值后(默认40),JVM就认为该class的使用场景存在多线程竞争,会标记该class为不可偏向,之后,对于该class的锁,直接走轻量级锁的逻辑。

没错,我就是厕所所长

加锁,指的是锁定对象

锁升级的过程

JDK较早的版本 OS的资源 互斥量 用户态 -> 内核态的转换 重量级 效率比较低

现代版本进行了优化

无锁 - 偏向锁 -轻量级锁(自旋锁)-重量级锁

偏向锁 - markword 上记录当前线程指针,下次同一个线程加锁的时候,不需要争用,只需要判断线程指针是否同一个,所以,偏向锁,偏向加锁的第一个线程 。hashCode备份在线程栈上 线程销毁,锁降级为无锁

有争用 - 锁升级为轻量级锁 - 每个线程有自己的LockRecord在自己的线程栈上,用CAS去争用markword的LR的指针,指针指向哪个线程的LR,哪个线程就拥有锁

自旋超过10次,升级为重量级锁 - 如果太多线程自旋 CPU消耗过大,不如升级为重量级锁,进入等待队列(不消耗CPU)-XX:PreBlockSpin

自旋锁在 JDK1.4.2 中引入,使用 -XX:+UseSpinning 来开启。JDK 6 中变为默认开启,并且引入了自适应的自旋锁(适应性自旋锁)。

自适应自旋锁意味着自旋的时间(次数)不再固定,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也是很有可能再次成功,进而它将允许自旋等待持续相对更长的时间。如果对于某个锁,自旋很少成功获得过,那在以后尝试获取这个锁时将可能省略掉自旋过程,直接阻塞线程,避免浪费处理器资源。

偏向锁由于有锁撤销的过程revoke,会消耗系统资源,所以,在锁争用特别激烈的时候,用偏向锁未必效率高。还不如直接使用轻量级锁。

锁重入

sychronized是可重入锁

重入次数必须记录,因为要解锁几次必须得对应

偏向锁 自旋锁 -> 线程栈 -> LR + 1

重量级锁 -> ? ObjectMonitor字段上

synchronized最底层实现

public class T { static volatile int i = 0; public static void n() { i++; } public static synchronized void m() {} publics static void main(String[] args) { for(int j=0; j<1000_000; j++) { m(); n(); } } }

java -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly T

C1 Compile Level 1 (一级优化)

C2 Compile Level 2 (二级优化)

找到m() n()方法的汇编码,会看到 lock comxchg …指令

synchronized vs Lock (CAS)

在高争用 高耗时的环境下synchronized效率更高 在低争用 低耗时的环境下CAS效率更高 synchronized到重量级之后是等待队列(不消耗CPU) CAS(等待期间消耗CPU) 一切以实测为准

锁消除 lock eliminate

public void add(String str1,String str2){ StringBuffer sb = new StringBuffer(); sb.append(str1).append(str2); }

我们都知道 StringBuffer 是线程安全的,因为它的关键方法都是被 synchronized 修饰过的,但我们看上面这段代码,我们会发现,sb 这个引用只会在 add 方法中使用,不可能被其它线程引用(因为是局部变量,栈私有),因此 sb 是不可能共享的资源,JVM 会自动消除 StringBuffer 对象内部的锁。

锁粗化 lock coarsening

public String test(String str){ int i = 0; StringBuffer sb = new StringBuffer(): while(i < 100){ sb.append(str); i++; } return sb.toString(): }

JVM 会检测到这样一连串的操作都对同一个对象加锁(while 循环内 100 次执行 append,没有锁粗化的就要进行 100 次加锁/解锁),此时 JVM 就会将加锁的范围粗化到这一连串的操作的外部(比如 while 虚幻体外),使得这一连串操作只需要加一次锁即可。

参考资料

http://openjdk.java.net/groups/hotspot/docs/HotSpotGlossary.html

最新回复(0)