一文详解三维重建之定位定姿算法

it2025-06-16  14

3D视觉的核心问题是恢复场景结构、相机位姿、和相机参数,而解决方式有两种,一种是off-line的sfm(structure from motion),一种on-line的slam(simultaneous localization and mapping)。Slam 与sfm的区别在于,大多数slam系统是需要提前标定相机,而sfm 则不需要提前标定(通常所说的三维重建和slam的区别,严格意义上应该是sfm 和slam的区别)。

Sfm 可以分为以下几类:Global SfM、Incremental SfM、Hybrid SfM、Distributed SfM,这里主要讲解Global SfM和ncremental SfM(主要集中在global sfm)。

一、Global SfM workflow:

3D视觉工坊 认证博客专家 算法 3D视觉 个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
最新回复(0)