1,关于Flink cdc的使用说明
1)导入依赖
<dependency>
<groupId>com.alibaba.ververica</groupId>
<artifactId>flink-connector-mysql-cdc</artifactId>
<version>1.1.0</version>
</dependency>
sql案例 :
2)需要理解注意的地方
这个锁可以去掉的,如果不去掉,也是很轻量级的,并不是snapshot完后才释放,而是拿到当前的binlog位点后就释放掉了。 如果表结构 不会变更的话可以完全禁用掉这个锁的。在sql里加上 'debezium.snapshot.locking.mode' = 'none' 就可以了
问题:使用cdc的时候会影响mysql的性能跟正常使用吗?
不会,这个锁应该很快就能释放,没什么性能瓶颈,但是得保证你接binlog的用户开了reload权限
请百度 ‘’mysql的reload权限‘
2,官网的案例代码
package cdc;
/**
* @program: flink-neiwang-dev
* @description: 通过cdc代码读取mysql的数据
* @author: Mr.Wang
* @create: 2020-10-21 15:29
**/
import com.alibaba.fastjson.JSONObject;
import com.alibaba.ververica.cdc.connectors.mysql.MySQLSource;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
public class MySqlBinlogSourceExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
SourceFunction<JSONObject> sourceFunction = MySQLSource.<JSONObject>builder()
.hostname("192.168.x.xx")
.port(3306)
.databaseList("cdc_test") // monitor all tables under inventory database
.username("root")
.password("xxxxxx")
.deserializer(new CdcDwdDeserializationSchema()) // converts SourceRecord to String
.build();
DataStreamSource<JSONObject> stringDataStreamSource = env.addSource(sourceFunction);
stringDataStreamSource.print("===>");
try {
env.execute("测试mysql-cdc");
} catch (Exception e) {
e.printStackTrace();
}
}
}
3,红色标注的地方我们自定义一个类,解析一下cdc的格式,然后拼接成自己需要的格式
package cdc;
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import com.alibaba.ververica.cdc.debezium.DebeziumDeserializationSchema;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.util.Collector;
import org.apache.kafka.connect.data.Field;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.data.Struct;
import org.apache.kafka.connect.source.SourceRecord;
import java.util.List;
/**
* @program: flink-neiwang-dev
* @description:
* @author: Mr.Wang
* @create: 2020-10-21 16:04
*
**/
//todo 这里是直接输出到dwd层代码
public class CdcDwdDeserializationSchema implements DebeziumDeserializationSchema<JSONObject> {
private static final long serialVersionUID = -3168848963265670603L;
public CdcDwdDeserializationSchema() {
}
@Override
public void deserialize(SourceRecord
record, Collector<JSONObject> out) throws Exception {
Struct dataRecord = (Struct)
record.value();
Struct afterStruct = dataRecord.getStruct("after");
Struct beforeStruct = dataRecord.getStruct("before");
/*
todo 1,同时存在 beforeStruct 跟 afterStruct数据的话,就代表是update的数据
2,只存在 beforeStruct 就是delete数据
3,只存在 afterStruct数据 就是insert数据
*/
JSONObject logJson = new JSONObject();
String canal_type = "";
List<Field> fieldsList = null;
if(afterStruct !=null && beforeStruct !=null){
System.out.println("这是修改数据");
canal_type = "update";
fieldsList = afterStruct.schema().fields();
//todo 字段与值
for (Field field : fieldsList) {
String fieldName = field.name();
Object fieldValue = afterStruct.get(fieldName);
// System.out.println("*****fieldName=" + fieldName+",fieldValue="+fieldValue);
logJson.put(fieldName,fieldValue);
}
}else if (afterStruct !=null){
System.out.println( "这是新增数据");
canal_type = "insert";
fieldsList = afterStruct.schema().fields();
//todo 字段与值
for (Field field : fieldsList) {
String fieldName = field.name();
Object fieldValue = afterStruct.get(fieldName);
// System.out.println("*****fieldName=" + fieldName+",fieldValue="+fieldValue);
logJson.put(fieldName,fieldValue);
}
}else if (beforeStruct !=null){
System.out.println( "这是删除数据");
canal_type = "detele";
fieldsList = beforeStruct.schema().fields();
//todo 字段与值
for (Field field : fieldsList) {
String fieldName = field.name();
Object fieldValue = beforeStruct.get(fieldName);
// System.out.println("*****fieldName=" + fieldName+",fieldValue="+fieldValue);
logJson.put(fieldName,fieldValue);
}
}else {
System.out.println("一脸蒙蔽了");
}
//todo 拿到databases table信息
Struct source = dataRecord.getStruct("source");
Object db = source.get("db");
Object table = source.get("table");
Object ts_ms = source.get("ts_ms");
logJson.put("canal_database",db);
logJson.put("canal_database",table);
logJson.put("canal_ts",ts_ms);
logJson.put("canal_type",canal_type);
//todo 拿到topic
String topic = record.topic();
System.out.println("topic = " + topic);
//todo 主键字段
Struct pk = (Struct)record.key();
List<Field> pkFieldList = pk.schema().fields();
int partitionerNum = 0 ;
for (Field field : pkFieldList) {
Object pkValue= pk.get(field.name());
partitionerNum += pkValue.hashCode();
}
int hash = Math.abs(partitionerNum) % 3;
logJson.put("pk_hashcode",hash);
out.collect(logJson);
}
@Override
public TypeInformation<JSONObject> getProducedType() {
return BasicTypeInfo.of(JSONObject.class);
}
}
上面红字体标注的record打断点为:
新增数据格式: SourceRecord{sourcePartition={server=mysql-binlog-source}, sourceOffset={file=mysql-bin.000002, pos=391425550, row=1, snapshot=true}} ConnectRecord{topic='mysql-binlog-source.cdc_test.test', kafkaPartition=null, key=Struct{id=1}, keySchema=Schema{mysql_binlog_source.cdc_test.test.Key:STRUCT}, value=Struct{after=Struct{id=1,name=第一行数据},source=Struct{version=1.2.0.Final,connector=mysql,name=mysql-binlog-source,ts_ms=0,snapshot=true,db=cdc_test,table=test,server_id=0,file=mysql-bin.000002,pos=391425550,row=0},op=c,ts_ms=1603365697093}, valueSchema=Schema{mysql_binlog_source.cdc_test.test.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)} 修改数据格式: SourceRecord{sourcePartition={server=mysql-binlog-source}, sourceOffset={ts_sec=1603363386, file=mysql-bin.000002, pos=391422962, row=1, server_id=1, event=2}} ConnectRecord{topic='mysql-binlog-source.cdc_test.test', kafkaPartition=null, key=Struct{id=get}, keySchema=Schema{mysql_binlog_source.cdc_test.test.Key:STRUCT}, value=Struct{before=Struct{id=get,name=get222},after=Struct{id=get,name=修改数据}, source=Struct{version=1.2.0.Final,connector=mysql,name=mysql-binlog-source,ts_ms=1603363386000,db=cdc_test,table=test,server_id=1,file=mysql-bin.000002,pos=391423094,row=0,thread=29}, op=u,ts_ms=1603363386700}, valueSchema=Schema{mysql_binlog_source.cdc_test.test.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)} 删除数据格式: SourceRecord{sourcePartition={server=mysql-binlog-source}, sourceOffset={ts_sec=1603363545, file=mysql-bin.000002, pos=391423260, row=1, server_id=1, event=2}} ConnectRecord{topic='mysql-binlog-source.cdc_test.test', kafkaPartition=null, key=Struct{id=get}, keySchema=Schema{mysql_binlog_source.cdc_test.test.Key:STRUCT}, value=Struct{before=Struct{id=get,name=修改数据},source=Struct{version=1.2.0.Final,connector=mysql,name=mysql-binlog-source,ts_ms=1603363545000,db=cdc_test,table=test,server_id=1,file=mysql-bin.000002,pos=391423392,row=0,thread=29}, op=d,ts_ms=1603363545295}, valueSchema=Schema{mysql_binlog_source.cdc_test.test.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
测试表演示:
控制台打印:
首次加载全量:
===>> {"canal_type":"insert","name":"第一行数据","id":"1","canal_ts":0,"canal_database":"test","pk_hashcode":1} 这是新增数据 topic = mysql-binlog-source.cdc_test.test ===>> {"canal_type":"insert","name":"爱迪生所多","id":"2","canal_ts":0,"canal_database":"test","pk_hashcode":2} 这是新增数据 topic = mysql-binlog-source.cdc_test.test 19:16:40,830 INFO com.alibaba.ververica.cdc.debezium.internal.DebeziumChangeConsumer - Received record from streaming binlog phase, released checkpoint lock. ===>> {"canal_type":"insert","name":"所得税的方式","id":"3","canal_ts":0,"canal_database":"test","pk_hashcode":0}
修改数据:
这是修改数据 topic = mysql-binlog-source.cdc_test.test ===>> {"canal_type":"update","name":"修改内容","id":"3","canal_ts":1603365535000,"canal_database":"test","pk_hashcode":0}
删除数据:
这是删除数据 topic = mysql-binlog-source.cdc_test.test ===>> {"canal_type":"detele","name":"修改内容","id":"3","canal_ts":1603365585000,"canal_database":"test","pk_hashcode":0}
参考:
https://github.com/ververica/flink-cdc-connectors/wiki/MySQL-CDC-Connector
https://mp.weixin.qq.com/s/Mfn-fFegb5wzI8BIHhNGvQ
看完点个赞!!!这对我来说很重要~