量子信息-学习记录7

it2024-12-13  18

ch.7. 量子通信(Quantum teleportation)

定义

  定义:量子通信是稠密编码的逆过程

  稠密编码与量子通信的对比:

源发送传递稠密编码 ∣ ϕ + ⟩ \mid\phi^+\rang ϕ+1 qubit2 bits量子通信 ∣ ϕ + ⟩ \mid\phi^+\rang ϕ+2 bits1 qubit

  定义:量子通信是一个信息协议,Alice通过与Bob共享一个最大纠缠态,传送一个未知的qubit、发送两个经典bits给远处的Bob

量子通信的标准描述

  假定Alice和Bob在两个不同的地方,现在Alice打算传递一个未知的qubit ∣ ψ ⟩ = α ∣ 0 ⟩ + β ∣ 1 ⟩ |\psi\rang=\alpha|0\rang+\beta|1\rang ψ=α0+β1给Bob,即:从 ∣ ψ ⟩ A |\psi\rang_A ψA ∣ ψ ⟩ B |\psi\rang_B ψB

  注意:在量子通信之后, ∣ ψ ⟩ A |\psi\rang_A ψA必须被销毁。否则, ∣ ψ ⟩ A → ∣ ψ ⟩ A ⊗ ∣ ψ ⟩ B |\psi\rang_A\rightarrow|\psi\rang_A\otimes|\psi\rang_B ψAψAψB将会违背不可克隆定理

第一步:态的准备

  Alice和Bob共享一个最大纠缠态 ∣ β 00 ⟩ |\beta_{00}\rang β00,则此时准备的态为: ∣ ψ ⟩ A ⊗ ∣ β 00 ⟩ |\psi\rang_A\otimes|\beta_{00}\rang ψAβ00

  定理: ∣ ψ ⟩ A ⊗ ∣ β 00 ⟩ A B = 1 2 ∑ i , j = 0 1 ∣ β i j ⟩ A A ⊗ X j Z i ∣ ψ ⟩ B |\psi\rang_A\otimes|\beta_{00}\rang_{AB}=\dfrac{1}{2}\sum\limits_{i,j=0}^1|\beta_{ij}\rang_{AA}\otimes X^jZ^i|\psi\rang_B ψAβ00AB=21i,j=01βijAAXjZiψB   证明: ∣ ψ ⟩ = α ∣ 0 ⟩ + β ∣ 1 ⟩ |\psi\rang=\alpha|0\rang+\beta|1\rang ψ=α0+β1

∣ 00 ⟩ = 1 2 ( ∣ β 00 ⟩ + ∣ β 10 ⟩ ) |00\rang=\dfrac{1}{\sqrt 2}(|\beta_{00}\rang+|\beta_{10}\rang) 00=2 1(β00+β10)

∣ 01 ⟩ = 1 2 ( ∣ β 01 ⟩ + ∣ β 11 ⟩ ) |01\rang=\dfrac{1}{\sqrt 2}(|\beta_{01}\rang+|\beta_{11}\rang) 01=2 1(β01+β11)

∣ 10 ⟩ = 1 2 ( ∣ β 01 ⟩ − ∣ β 11 ⟩ ) |10\rang=\dfrac{1}{\sqrt 2}(|\beta_{01}\rang-|\beta_{11}\rang) 10=2 1(β01β11)

∣ 11 ⟩ = 1 2 ( ∣ β 00 ⟩ − ∣ β 10 ⟩ ) |11\rang=\dfrac{1}{\sqrt 2}(|\beta_{00}\rang-|\beta_{10}\rang) 11=2 1(β00β10)

∣ ψ ⟩ A ∣ β 00 ⟩ A B = 1 2 ( α ∣ 0 ⟩ A + β ∣ 1 ⟩ A ) ( ∣ 00 ⟩ A B + ∣ 11 ⟩ A B ) = 1 2 ( α ∣ 000 ⟩ + α ∣ 011 ⟩ + β ∣ 100 ⟩ + β ∣ 111 ⟩ ) A A B = 1 2 α ( ∣ β 00 ⟩ + ∣ β 10 ⟩ ) ∣ 0 ⟩ A A B + 1 2 α ( ∣ β 01 ⟩ + ∣ β 11 ⟩ ) A A ∣ 1 ⟩ B + 1 2 β ( ∣ β 01 ⟩ − ∣ β 11 ⟩ ) A A ∣ 0 ⟩ B + 1 2 β ( ∣ β 00 ⟩ A A − ∣ β 10 ⟩ A A ) ∣ 1 ⟩ B = 1 2 ∣ β 00 ⟩ A A ( α ∣ 0 ⟩ + β ∣ 1 ⟩ ) B + 1 2 ∣ β 10 ⟩ A A ( α ∣ 0 ⟩ − β ∣ 1 ⟩ ) B + 1 2 ∣ β 01 ⟩ A A ( α ∣ 1 ⟩ + β ∣ 0 ⟩ ) B + 1 2 ∣ β 11 ⟩ A A ( α ∣ 1 ⟩ − β ∣ 0 ⟩ ) B = 1 2 ∣ β 00 ⟩ A A ∣ ψ ⟩ B + 1 2 ∣ β 10 ⟩ A A Z ∣ ψ ⟩ B + 1 2 ∣ β 01 ⟩ A A X ∣ ψ ⟩ B + 1 2 ∣ β 11 ⟩ A A X Z ∣ ψ ⟩ B = 1 2 ∑ i , j = 0 1 ∣ β i j ⟩ A A X j Z i ∣ ψ ⟩ B \begin{aligned}|\psi\rang_A|\beta_{00}\rang_{AB}&=\frac{1}{\sqrt 2}(\alpha|0\rang_A+\beta|1\rang_A)(|00\rang_{AB}+|11\rang_{AB})\\ &=\frac{1}{\sqrt 2}(\alpha|000\rang+\alpha|011\rang+\beta|100\rang+\beta|111\rang)_{AAB}\\ &=\frac{1}{2}\alpha(|\beta_{00}\rang+|\beta_{10}\rang)|0\rang_{AAB}+\frac{1}{2}\alpha(|\beta_{01}\rang+|\beta_{11}\rang)_{AA}|1\rang_B\\ &+\frac{1}{2}\beta(|\beta_{01}\rang-|\beta_{11}\rang)_{AA}|0\rang_B+\frac{1}{2}\beta(|\beta_{00}\rang_{AA}-|\beta_{10}\rang_{AA})|1\rang_B\\ &=\frac{1}{2}|\beta_{00}\rang_{AA}(\alpha|0\rang+\beta|1\rang)_B+\frac{1}{2}|\beta_{10}\rang_{AA}(\alpha|0\rang-\beta|1\rang)_B\\ &+\frac{1}{2}|\beta_{01}\rang_{AA}(\alpha|1\rang+\beta|0\rang)_B+\frac{1}{2}|\beta_{11}\rang_{AA}(\alpha|1\rang-\beta|0\rang)_B\\ &=\frac{1}{2}|\beta_{00}\rang_{AA}|\psi\rang_B+\frac{1}{2}|\beta_{10}\rang_{AA}Z|\psi\rang_B\\ &+\frac{1}{2}|\beta_{01}\rang_{AA}X|\psi\rang_B+\frac{1}{2}|\beta_{11}\rang_{AA}XZ|\psi\rang_B\\ &=\frac{1}{2}\sum\limits_{i,j=0}^1|\beta_{ij}\rang_{AA}X^jZ^i|\psi\rang_B\end{aligned} ψAβ00AB=2 1(α0A+β1A)(00AB+11AB)=2 1(α000+α011+β100+β111)AAB=21α(β00+β10)0AAB+21α(β01+β11)AA1B+21β(β01β11)AA0B+21β(β00AAβ10AA)1B=21β00AA(α0+β1)B+21β10AA(α0β1)B+21β01AA(α1+β0)B+21β11AA(α1β0)B=21β00AAψB+21β10AAZψB+21β01AAXψB+21β11AAXZψB=21i,j=01βijAAXjZiψB

  批注:这里运用了态函数的线性叠加原理

第二步:Alice对系统进行Bell测量

  Alice对系统进行Bell测量:

X ⊗ X ∣ β i j ⟩ A A = ( − 1 ) i ∣ β i j ⟩ A A X\otimes X|\beta_{ij}\rang_{AA}=(-1)^i|\beta_{ij}\rang_{AA} XXβijAA=(1)iβijAA

Z ⊗ Z ∣ β i j ⟩ A A = ( − 1 ) j ∣ β i j ⟩ A A Z\otimes Z|\beta_{ij}\rang_{AA}=(-1)^j|\beta_{ij}\rang_{AA} ZZβijAA=(1)jβijAA

  其中,i和j是两个经典bits,对于不同的态,测量结果如下:

∣ β i j ⟩ \mid\beta_{ij}\rang βij X ⊗ X X\otimes X XX / ( − 1 ) i (-1)^i (1)i Z ⊗ Z Z\otimes Z ZZ / ( − 1 ) j (-1)^j (1)jtwo-bit ∣ β 00 ⟩ \mid\beta_{00}\rang β0011(0,0) ∣ β 01 ⟩ \mid\beta_{01}\rang β011-1(0,1) ∣ β 10 ⟩ \mid\beta_{10}\rang β10-11(1,0) ∣ β 11 ⟩ \mid\beta_{11}\rang β11-1-1(1,1)

  在进行Bell测量前,密度矩阵为:

ρ A A B = ∣ Ψ ⟩ A A B ⟨ Ψ ∣ \rho_{AAB}=|\Psi\rang_{AAB}\lang\Psi| ρAAB=ΨAABΨ

  其中: ∣ Ψ ⟩ A A B = ∣ Ψ ⟩ A ∣ β 00 ⟩ A B |\Psi\rang_{AAB}=|\Psi\rang_A|\beta_{00}\rang_{AB} ΨAAB=ΨAβ00AB

  在进行Bell测量后, ∣ Ψ ⟩ A A B |\Psi\rang_{AAB} ΨAAB分别有四分之一的概率变为 ∣ Φ i j ⟩ A A B |\Phi_{ij}\rang_{AAB} ΦijAAB

∣ Φ i j ⟩ A A B = ∣ β i j ⟩ A A X j Z i ∣ Ψ ⟩ B |\Phi_{ij}\rang_{AAB}=|\beta_{ij}\rang_{AA}X^jZ^i|\Psi\rang_B ΦijAAB=βijAAXjZiΨB

  混合态:

ρ A A B 1 = ∑ i , j = 0 1 1 4 ∣ Φ i j ⟩ A A B ⟨ Φ i j ∣ \rho_{AAB}^1=\sum\limits_{i,j=0}^1\dfrac{1}{4}|\Phi_{ij}\rang_{AAB}\lang\Phi_{ij}| ρAAB1=i,j=0141ΦijAABΦij

  在Bob的体系中,密度矩阵简化:

ρ B 1 = t r A A ρ A A B 1 = ∑ k , l = 0 1   A A ⟨ β k l ∣ ρ A A B 1 ∣ β k l ⟩ A A \rho_B^1=tr_{AA}\rho_{AAB}^1=\sum\limits_{k,l=0}^1\ _{AA}\lang\beta_{kl}|\rho_{AAB}^1|\beta_{kl}\rang_{AA} ρB1=trAAρAAB1=k,l=01 AAβklρAAB1βklAA

ρ B 1 = 1 4 ∑ k , l = 0 1 X k Z l ∣ ψ ⟩ B ⟨ ψ ∣ Z l X k \rho_B^1=\dfrac{1}{4}\sum\limits_{k,l=0}^1X^kZ^l|\psi\rang_B\lang\psi| Z^lX^k ρB1=41k,l=01XkZlψBψZlXk

∣ ψ ⟩ B = α ∣ 0 ⟩ + β ∣ 1 ⟩ |\psi\rang_B=\alpha|0\rang+\beta|1\rang ψB=α0+β1

ρ B 1 = 1 2 ( ∣ 0 ⟩ B ⟨ 0 ∣ + ∣ 1 ⟩ B ⟨ 1 ∣ ) = 1 2 I 2 \rho_B^1=\dfrac{1}{2}(|0\rang_B\lang 0|+|1\rang_B\lang 1|)=\dfrac{1}{2}I_2 ρB1=21(0B0+1B1)=21I2

  此混合态正好对应于Bloch球的球心

第三步:经典通信

  Alice将测量的输出值(i, j)发送给Bob:

∣ Ψ ⟩ A A B → ∣ Φ i j ⟩ A A B = ∣ β i j ⟩ A A ⊗ X j Z i ∣ ψ ⟩ B |\Psi\rang_{AAB}\rightarrow|\Phi_{ij}\rang_{AAB}=|\beta_{ij}\rang_{AA}\otimes X^jZ^i|\psi\rang_B ΨAABΦijAAB=βijAAXjZiψB

  在Alice测量结束的时候,Bob对自己的qubit的情况是不知道的

第四步:酉校正(Unitary Correction Operation)操作

  根据Alice和Bob之间的协议,Bob对Alice的信息(i, j)进行操作:

( I 2 ⊗ I 2 ⊗ Z i X j ) ( ∣ β i j ⟩ A A ⊗ X j Z i ∣ ψ ⟩ B ) = ∣ β i j ⟩ A A ⊗ ∣ ψ ⟩ B (I_2\otimes I_2\otimes Z^iX^j)(|\beta_{ij}\rang_{AA}\otimes X^jZ^i|\psi\rang_B)=|\beta_{ij}\rang_{AA}\otimes|\psi\rang_B (I2I2ZiXj)(βijAAXjZiψB)=βijAAψB

  此时,Alice的原始 ∣ ψ ⟩ |\psi\rang ψ被摧毁,Bob得到了一个完美的 ∣ ψ ⟩ |\psi\rang ψ复制品

量子通信的量子电路

  量子通信的量子电路如图1所示:

图1 量子通信的量子电路

  其中:

  Alice测量的结果:

  测量时,使用了投影测量方式,相应的图像表示分别为:

最新回复(0)