SLAM十四讲—CH3

it2024-11-20  1

SLAM十四讲—CH3

标签: SLAM十四讲笔记


设线性⽅程 A x = b Ax = b Ax=b,在A 为⽅阵的前提下,请回答以下问题:

熟悉Eigen矩阵运算

1. 在什么条件下, x ⃗ \vec{x} x 有解且唯⼀?

如果A为n维方阵 ∣ A ∣ ≠ 0 或 R ( A ) = R ( A , b ) = n |A| \neq 0 或R(A)=R(A,b)=n A=0R(A)=R(A,b)=n

2. 高斯消元法的原理是什么?

Gauss消去法是一种规则化的加减消元法。它的基本思想是:通过逐次消元计算把需求解的线性方程组转化成上三角形方程组,也就是把线性方程组的系数矩阵转化为上三角矩阵,从而使一般线性方程组的求解转化为等价(同解)的上三角方程组求解。

顺序Gauss消去法列主元Gauss消去法

3. QR 分解的原理是什么?

视频

4.Cholesky分解的原理是什么?

Cholesky 分解是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解。它要求矩阵的所有特征值必须大于零,故分解的下三角的对角元也是大于零的。Cholesky分解法又称平方根法,是当A为实对称正定矩阵时,LU三角分解法的变形。

5.编程实现A 为100 x 100 随机矩阵时,⽤QR 和Cholesky 分解求x 的程序。你可以参考本次课⽤到的useEigen 例程。

#include "iostream" using namespace std; #include "ctime" #include "Eigen/Core" #include "Eigen/Dense" #include <Eigen/Cholesky> #include <Eigen/QR> int main(int argc,char **argv){ Eigen::Matrix<double,100,100> matrix100_100; matrix100_100 = Eigen::MatrixXd::Random(100,100); Eigen::Matrix<double,100,1> vector100; Eigen::Matrix<double,100,1> x; vector100 = Eigen::MatrixXd::Random(100,1); clock_t time_stt = clock(); x = matrix100_100.colPivHouseholderQr().solve(vector100); cout <<x<<endl; cout <<"time used in Qr decomposition is"<<1000*(clock()-time_stt)/(double)CLOCKS_PER_SEC<<"ms"<<endl; time_stt = clock(); x = matrix100_100.householderQr().solve(vector100); cout <<x<<endl; cout <<"time used in qr decomposition is"<<1000*(clock()-time_stt)/(double)CLOCKS_PER_SEC<<"ms"<<endl; time_stt = clock(); x = matrix100_100.ldlt().solve(vector100); cout <<x<<endl; cout <<"time used in ldlt decomposition is"<<1000*(clock()-time_stt)/(double)CLOCKS_PER_SEC<<"ms"<<endl; }

几何运算练习

四元数->旋转向量->旋转矩阵

#include <iostream> #include <Eigen/Geometry> #include <cmath> using namespace std; int main(int argc,char **argv){ Eigen::Matrix<double,4,1> V_q1,V_q2; V_q1<<0.55 ,0.3,0.2,0.2; V_q2<<-0.1,0.3,-0.7,0.2; double temp; temp = sqrt(pow(V_q1[0],2)+pow(V_q1[1],2)+pow(V_q1[2],2)+pow(V_q1[3],2)); int i; for(i=0;i<=3;i++) { V_q1[i]=V_q1[i]/temp; } temp = sqrt(pow(V_q2[0],2)+pow(V_q2[1],2)+pow(V_q2[2],2)+pow(V_q2[3],2)); for(i=0;i<=3;i++) { V_q2[i] = V_q2[i] / temp; } Eigen::Quaterniond q1(V_q1[0],V_q1[1],V_q1[2],V_q1[3]); cout<<q1.coeffs()<<endl; Eigen::Quaterniond q2(V_q2[0],V_q2[1],V_q2[2],V_q2[3]); cout<<q2.coeffs()<<endl; Eigen::Matrix<double,3,1> p1,t1,t2; t1<<0.7,1.1,0.2; t2<<-0.1,0.4,0.8; p1<<0.5,-0.1,0.2; Eigen::AngleAxisd rotation_vectorT1=Eigen::AngleAxisd(q1); Eigen::Isometry3d T1=Eigen::Isometry3d::Identity(); T1.rotate(rotation_vectorT1); T1.pretranslate(t1); Eigen::AngleAxisd rotation_vectorT2=Eigen::AngleAxisd(q2); Eigen::Isometry3d T2=Eigen::Isometry3d::Identity(); T2.rotate(rotation_vectorT2); T2.pretranslate(t2); Eigen::Vector3d V_rotation; V_rotation =T2*T1.inverse()*p1; cout<<V_rotation.transpose()<<endl; return 0; }

四元数

#include <iostream> #include <Eigen/Geometry> #include <cmath> using namespace std; int main(int argc,char **argv){ Eigen::Matrix<double,4,1> V_q1,V_q2; V_q1<<0.55 ,-0.3,-0.2,-0.2; V_q2<<-0.1,0.3,-0.7,0.2; double temp; temp = sqrt(pow(V_q1[0],2)+pow(V_q1[1],2)+pow(V_q1[2],2)+pow(V_q1[3],2)); int i; for(i=0;i<=3;i++) { V_q1[i]=V_q1[i]/temp; } temp = sqrt(pow(V_q2[0],2)+pow(V_q2[1],2)+pow(V_q2[2],2)+pow(V_q2[3],2)); for(i=0;i<=3;i++) { V_q2[i] = V_q2[i] / temp; } Eigen::Quaterniond q1(V_q1[0],V_q1[1],V_q1[2],V_q1[3]); cout<<q1.coeffs()<<endl; Eigen::Quaterniond q2(V_q2[0],V_q2[1],V_q2[2],V_q2[3]); cout<<q2.coeffs()<<endl; Eigen::Matrix<double,3,1> t1,t2; Eigen::Matrix<double,3,1> p1; t1<<0.7,1.1,0.2; t2<<-0.1,0.4,0.8; Eigen::Vector3d V_rotation; p1<<0.5,-0.1,0.2; V_rotation = q1*(p1-t1); V_rotation = q2*V_rotation+t2; cout<<V_rotation.transpose(); return 0; } #include <iostream> #include <Eigen/Geometry> #include <cmath> using namespace std; using namespace Eigen; int main(int argc,char **argv) { Quaterniond q1(0.55,0.3,0.2,0.2),q2(-0.1,0.3,-0.7,0.2); q1.normalize(); q2.normalize(); Vector3d t1(0.7,1.1,0.2),t2(-0.1,0.4,0.8); Vector3d p1(0.5,-0.1,0.2); Isometry3d T1w(q1),T2w(q2); T1w.pretranslate(t1); T2w.pretranslate(t2); Vector3d p2 = T2w*T1w.inverse()*p1; cout<<endl<<p2.transpose()<<endl; return 0; }

在利用四元数计算,发现

Eigen::Vector3d V_rotation; p1<<0.5,-0.1,0.2; V_rotation = q1*(p1-t1); V_rotation = q2*V_rotation+t2; cout<<V_rotation.transpose();

其中代码为q1*(p1-t1)与q1*p1-t1即先平移再旋转和先旋转后平移结果不一样,并且四元数的逆操作不是乘以逆矩阵而是乘以共轭向量。 矩阵变换

旋转的表达

1.设有旋转矩阵 R R R,证明: R T R = I R^TR = I RTR=I d e t R = + 1 2 detR = +1^2 detR=+12

证明: 在坐标系中 A A A中有: x ^ A = ( 1 , 0 , 0 ) , \hat{x}_A=(1,0,0), x^A=(1,0,0), y ^ A = ( 0 , 1 , 0 ) , \hat{y}_A=(0,1,0), y^A=(0,1,0), z ^ A = ( 0 , 0 , 1 ) \hat{z}_A=(0,0,1) z^A=(0,0,1)。 经过旋转后变成坐标系 B B B,用矩阵描述为: M B = R M A M_B=RM_A MB=RMA 旋转后的X轴在 A A A的坐标系中可表示为 x ^ B = a x ^ A + b y ^ A + c z ^ A \hat{x}_B=a\hat{x}_A+b\hat{y}_A+c\hat{z}_A x^B=ax^A+by^A+cz^A 也即 x ^ B = ( x ^ B x ^ A T , x ^ B y ^ A T , x ^ B z ^ A T ) \hat{x}_B=(\hat{x}_B\hat{x}_A^T,\hat{x}_B\hat{y}_A^T,\hat{x}_B\hat{z}_A^T) x^B=(x^Bx^AT,x^By^AT,x^Bz^AT) 同理可得 y ^ B , z ^ B \hat{y}_B,\hat{z}_B y^B,z^B,则 R = [ x ^ B x ^ A T y ^ B x ^ A T z ^ B x ^ A T x ^ B y ^ A T y ^ B y ^ A T z ^ B y ^ A T x ^ B z ^ A T y ^ B z ^ A T z ^ B z ^ A T ] R=\begin{bmatrix} \hat{x}_B\hat{x}_A^T&\hat{y}_B\hat{x}_A^T&\hat{z}_B\hat{x}_A^T\\ \hat{x}_B\hat{y}_A^T&\hat{y}_B\hat{y}_A^T&\hat{z}_B\hat{y}_A^T\\ \hat{x}_B\hat{z}_A^T&\hat{y}_B\hat{z}_A^T&\hat{z}_B\hat{z}_A^T \end{bmatrix} R=x^Bx^ATx^By^ATx^Bz^ATy^Bx^ATy^By^ATy^Bz^ATz^Bx^ATz^By^ATz^Bz^AT R T = [ x ^ B x ^ A T x ^ B y ^ A T x ^ B z ^ A T y ^ B x ^ A T y ^ B y ^ A T y ^ B z ^ A T z ^ B x ^ A T z ^ B y ^ A T z ^ B z ^ A T ] R^T=\begin{bmatrix} \hat{x}_B\hat{x}_A^T&\hat{x}_B\hat{y}_A^T&\hat{x}_B\hat{z}_A^T\\ \hat{y}_B\hat{x}_A^T&\hat{y}_B\hat{y}_A^T&\hat{y}_B\hat{z}_A^T\\ \hat{z}_B\hat{x}_A^T&\hat{z}_B\hat{y}_A^T&\hat{z}_B\hat{z}_A^T \end{bmatrix} RT=x^Bx^ATy^Bx^ATz^Bx^ATx^By^ATy^By^ATz^By^ATx^Bz^ATy^Bz^ATz^Bz^AT 将坐标系 B , B, B,逆旋转变成坐标系 A A A后,也可得到一个旋转矩阵为 R R R的逆矩阵,易知: R − 1 = [ x ^ A x ^ B T y ^ A x ^ B T z ^ B x ^ B T x ^ A y ^ B T y ^ A y ^ B T z ^ B y ^ B T x ^ A z ^ B T y ^ A z ^ B T z ^ B z ^ B T ] R^{-1}=\begin{bmatrix} \hat{x}_A\hat{x}_B^T&\hat{y}_A\hat{x}_B^T&\hat{z}_B\hat{x}_B^T\\ \hat{x}_A\hat{y}_B^T&\hat{y}_A\hat{y}_B^T&\hat{z}_B\hat{y}_B^T\\ \hat{x}_A\hat{z}_B^T&\hat{y}_A\hat{z}_B^T&\hat{z}_B\hat{z}_B^T \end{bmatrix} R1=x^Ax^BTx^Ay^BTx^Az^BTy^Ax^BTy^Ay^BTy^Az^BTz^Bx^BTz^By^BTz^Bz^BT x ^ B x ^ A T \hat{x}_B\hat{x}_A^T x^Bx^AT x ^ A x ^ B T \hat{x}_A\hat{x}_B^T x^Ax^BT为例: 前者表示在坐标系A下两个向量的点乘,后者表示在坐标系B下两个向量的点乘,两个向量长度相同,在不同坐标系下,点乘结果相同,也即相互的投影长度相等,即 x ^ B x ^ A T = x ^ A x ^ B T \hat{x}_B\hat{x}_A^T=\hat{x}_A\hat{x}_B^T x^Bx^AT=x^Ax^BT,同理可知 R T R^T RT R − 1 R^{-1} R1对应位置处的数值相等 R T = R − 1 R^T=R^{-1} RT=R1 所以旋转矩阵的逆为它的转置矩阵,即 R R T = R R − 1 = E RR^T=RR^{-1}=E RRT=RR1=E因此R矩阵为正交矩阵。

2.设有四元数 q q q,我们把虚部记为 ϵ \epsilon ϵ,实部记为 η \eta η,那么 q = ( ϵ , η ) q=(\epsilon,\eta) q=(ϵ,η)。请说明 ϵ \epsilon ϵ η \eta η的维度。

答:四元数 q q q,虚部有三个,实部有一个。所以 ϵ \epsilon ϵ的维度是3, η \eta η的维度1。

3.定义运算 + ^{+} + ⨁ ^{\bigoplus} ,为: q + = [ η 1 − ϵ × ϵ ϵ T η ] , q ⨁ = [ η 1 + ϵ × ϵ − ϵ T η ] (1) q^{+}=\begin{bmatrix} \eta 1-\epsilon^{\times}&\epsilon\\\epsilon^{T}&\eta\end{bmatrix},q^{\bigoplus}=\begin {bmatrix}\eta1+\epsilon^{\times}&\epsilon\\-\epsilon^{T}&\eta\end{bmatrix} \tag 1 q+=[η1ϵ×ϵTϵη],q=[η1+ϵ×ϵTϵη](1)请证明对任意单位四元数 q 1 q_{1} q1, q 2 q_{2} q2,四元数乘法可写成矩阵乘法: q 1 ⋅ q 2 = q 1 + q 2 (2) q_{1} \cdot q_{2} =q_{1}^{+}q_{2} \tag 2 q1q2=q1+q2(2)或者 q 1 ⋅ q 2 = q 2 ⨁ q 1 (3) q_{1} \cdot q_{2} =q_{2}^{\bigoplus}q_{1} \tag 3 q1q2=q2q1(3)

证明: q 1 = [ ϵ 1 η 1 ] , q 2 = [ ϵ 2 η 2 ] q_{1}=\begin {bmatrix}\epsilon_{1}\\ \eta_{1} \end {bmatrix},q_{2}=\begin{bmatrix} \epsilon_{2} \\\eta_{2}\end{bmatrix} q1=[ϵ1η1],q2=[ϵ2η2] q 1 q 2 = [ η 1 ϵ 2 + η 2 ϵ 1 + ϵ 1 × ϵ 2 η 1 η 2 − ϵ 1 T ϵ 2 ] q_{1}q_{2}=\begin{bmatrix} \eta_{1}\epsilon_{2}+\eta_{2}\epsilon_{1}+\epsilon_{1}\times\epsilon_{2} \\\eta_{1}\eta_{2}-\epsilon_{1}^{T}\epsilon_{2}\end{bmatrix} q1q2=[η1ϵ2+η2ϵ1+ϵ1×ϵ2η1η2ϵ1Tϵ2] q 1 + q 2 = [ η 1 1 + ϵ 1 × ϵ 1 − ϵ 1 T η 1 ] [ ϵ 2 η 2 ] = [ ( η 1 1 + ϵ 1 × ) ∗ ϵ 2 + ϵ 1 ∗ η 2 η 1 ∗ η 2 − ϵ 1 T ∗ ϵ 2 ] = [ η 1 ∗ ϵ 2 + ϵ 1 ∗ η 2 + ϵ 1 × ϵ 2 η 1 ∗ η 2 − ϵ 1 T ∗ ϵ 2 ] = q 1 q 2 q_{1}^{+}q_{2}=\begin{bmatrix} \eta_{1}1+\epsilon_{1}^{\times}&\epsilon_{1}\\-\epsilon_{1}^{T}&\eta_{1}\end{bmatrix}\begin{bmatrix} \epsilon_{2}\\\eta_{2}\end{bmatrix}=\begin{bmatrix}(\eta_{1}1+\epsilon_{1}^{\times})*\epsilon_{2}+\epsilon_{1}*\eta_{2}\\\eta_{1}*\eta_{2}-\epsilon_{1}^{T}*\epsilon_{2}\end{bmatrix}=\begin{bmatrix}\eta_{1}*\epsilon_{2}+\epsilon_{1}*\eta_{2}+\epsilon_{1}\times\epsilon_{2}\\\eta_{1}*\eta_{2}-\epsilon_{1}^{T}*\epsilon_{2}\end{bmatrix}=q_{1}q_{2} q1+q2=[η11+ϵ1×ϵ1Tϵ1η1][ϵ2η2]=[(η11+ϵ1×)ϵ2+ϵ1η2η1η2ϵ1Tϵ2]=[η1ϵ2+ϵ1η2+ϵ1×ϵ2η1η2ϵ1Tϵ2]=q1q2 q 2 ⨁ q 1 = [ η 2 1 + ϵ 2 × ϵ 2 − ϵ 2 T η 2 ] [ ϵ 1 η 1 ] = [ ( η 2 1 + ϵ 2 × ) ∗ ϵ 1 + ϵ 2 ∗ η 1 η 1 ∗ η 2 − ϵ 2 T ∗ ϵ 1 ] = [ η 1 ∗ ϵ 2 + ϵ 1 ∗ η 2 + ϵ 1 × ϵ 2 η 1 ∗ η 2 − ϵ 1 T ∗ ϵ 2 ] = q 1 q 2 q_{2}^{\bigoplus}q_{1}=\begin{bmatrix} \eta_{2}1+\epsilon_{2}^{\times}&\epsilon_{2}\\-\epsilon_{2}^{T}&\eta_{2}\end{bmatrix}\begin{bmatrix} \epsilon_{1}\\\eta_{1}\end{bmatrix}=\begin{bmatrix}(\eta_{2}1+\epsilon_{2}^{\times})*\epsilon_{1}+\epsilon_{2}*\eta_{1}\\\eta_{1}*\eta_{2}-\epsilon_{2}^{T}*\epsilon_{1}\end{bmatrix}=\begin{bmatrix}\eta_{1}*\epsilon_{2}+\epsilon_{1}*\eta_{2}+\epsilon_{1}\times\epsilon_{2}\\\eta_{1}*\eta_{2}-\epsilon_{1}^{T}*\epsilon_{2}\end{bmatrix}=q_{1}q_{2} q2q1=[η21+ϵ2×ϵ2Tϵ2η2][ϵ1η1]=[(η21+ϵ2×)ϵ1+ϵ2η1η1η2ϵ2Tϵ1]=[η1ϵ2+ϵ1η2+ϵ1×ϵ2η1η2ϵ1Tϵ2]=q1q2

4.罗德里格斯公式证明

证明

5.四元数运算性质的验证

SLAM十四讲第二版P59-60.

最新回复(0)