、
免费领取 要的+V 领取
①要求where子句使用的所有字段,都必须建立索引;
②如果数据量太少,mysql制定执行计划时发现全表扫描比索引查找更快,所以会不使用索引;
③确保mysql版本5.0以上,且查询优化器开启了index_merge_union=on, 也就是变量optimizer_switch里存在index_merge_union且为on。
负向条件有:!=、<>、not in、not exists、not like 等。
例如下面SQL语句:
select * from doc where status != 1 and status != 2; 复制代码 可以优化为 in 查询: select * from doc where status in (0,3,4); 复制代码如果在(a,b,c)三个字段上建立联合索引,那么他会自动建立 a| (a,b) | (a,b,c)组索引。
登录业务需求,SQL语句如下:
select uid, login_time from user where login_name=? andpasswd=? 复制代码 可以建立(login_name, passwd)的联合索引。因为业务上几乎没有passwd 的单条件查询需求,而有很多login_name 的单条件查询需求,所以可以建立(login_name, passwd)的联合索引,而不是(passwd, login_name)。 建立联合索引的时候,区分度最高的字段在最左边 存在非等号和等号混合判断条件时,在建立索引时,把等号条件的列前置。如 where a>? and b=?,那么即使a 的区分度更高,也必须把 b 放在索引的最前列。 最左前缀查询时,并不是指SQL语句的where顺序要和联合索引一致。 下面的 SQL 语句也可以命中 (login_name, passwd) 这个联合索引: select uid, login_time from user where passwd=? andlogin_name=? 复制代码 但还是建议 where 后的顺序和联合索引一致,养成好习惯。 假如index(a,b,c), where a=3 and b like 'abc%' and c=4,a能用,b能用,c不能用。更新会变更 B+ 树,更新频繁的字段建立索引会大大降低数据库性能。
“性别”这种区分度不大的属性,建立索引是没有什么意义的,不能有效过滤数据,性能与全表扫描类似。
一般区分度在80%以上的时候就可以建立索引,区分度可以使用 count(distinct(列名))/count(*) 来计算。
对列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个CHAR(255)的列,如果该列在前10个或20个字符内,可以做到既使得前缀索引的区分度接近全列索引,那么就不要对整个列进行索引。因为短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作,减少索引文件的维护开销。可以使用count(distinct leftIndex(列名, 索引长度))/count(*) 来计算前缀索引的区分度。
但缺点是不能用于 ORDER BY 和 GROUP BY 操作,也不能用于覆盖索引。
不过很多时候没必要对全字段建立索引,根据实际文本区分度决定索引长度即可。
需要 join 的字段,数据类型必须一致,多表关联查询时,保证被关联的字段需要有索引。
例如:left join是由左边决定的,左边的数据一定都有,所以右边是我们的关键点,建立索引要建右边的。当然如果索引在左边,可以用right join。
consts:单表中最多只有一个匹配行(主键或者唯一索引),在优化阶段即可读取到数据。
ref:使用普通的索引(Normal Index)。
range:对索引进行范围检索。
当 type=index 时,索引物理文件全扫,速度非常慢。
既然索引可以加快查询速度,那么是不是只要是查询语句需要,就建上索引?答案是否定的。因为索引虽然加快了查询速度,但索引也是有代价的:索引文件本身要消耗存储空间,同时索引会加重插入、删除和修改记录时的负担,另外,MySQL在运行时也要消耗资源维护索引,因此索引并不是越多越好。一般两种情况下不建议建索引。
第一种情况是表记录比较少,例如一两千条甚至只有几百条记录的表,没必要建索引,让查询做全表扫描就好了。至于多少条记录才算多,这个个人有个人的看法,我个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。
另一种不建议建索引的情况是索引的选择性较低。所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值:
Index Selectivity = Cardinality / #T 复制代码 显然选择性的取值范围为(0, 1]``,选择性越高的索引价值越大,这是由B+Tree的性质决定的。例如,employees.titles表,如果title`字段经常被单独查询,是否需要建索引,我们看一下它的选择性: SELECT count(DISTINCT(title))/count(*) AS Selectivity FROM employees.titles; +-------------+ | Selectivity | +-------------+ | 0.0000 | +-------------+ 复制代码title的选择性不足0.0001(精确值为0.00001579),所以实在没有什么必要为其单独建索引。
有一种与索引选择性有关的索引优化策略叫做前缀索引,就是用列的前缀代替整个列作为索引key,当前缀长度合适时,可以做到既使得前缀索引的选择性接近全列索引,同时因为索引key变短而减少了索引文件的大小和维护开销。下面以employees.employees表为例介绍前缀索引的选择和使用。
假设employees表只有一个索引<emp_no>,那么如果我们想按名字搜索一个人,就只能全表扫描了:
EXPLAIN SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido'; +----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+ | 1 | SIMPLE | employees | ALL | NULL | NULL | NULL | NULL | 300024 | Using where | +----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+ 复制代码 如果频繁按名字搜索员工,这样显然效率很低,因此我们可以考虑建索引。有两种选择,建<first_name>或<first_name, last_name>,看下两个索引的选择性: SELECT count(DISTINCT(first_name))/count(*) AS Selectivity FROM employees.employees; +-------------+ | Selectivity | +-------------+ | 0.0042 | +-------------+ SELECT count(DISTINCT(concat(first_name, last_name)))/count(*) AS Selectivity FROM employees.employees; +-------------+ | Selectivity | +-------------+ | 0.9313 | +-------------+ 复制代码 <first_name>显然选择性太低,`<first_name, last_name>选择性很好,但是first_name和last_name加起来长度为30,有没有兼顾长度和选择性的办法?可以考虑用first_name和last_name的前几个字符建立索引,例如<first_name, left(last_name, 3)>,看看其选择性: SELECT count(DISTINCT(concat(first_name, left(last_name, 3))))/count(*) AS Selectivity FROM employees.employees; +-------------+ | Selectivity | +-------------+ | 0.7879 | +-------------+ 复制代码 选择性还不错,但离0.9313还是有点距离,那么把last_name前缀加到4: SELECT count(DISTINCT(concat(first_name, left(last_name, 4))))/count(*) AS Selectivity FROM employees.employees; +-------------+ | Selectivity | +-------------+ | 0.9007 | +-------------+ 复制代码 这时选择性已经很理想了,而这个索引的长度只有18,比<first_name, last_name>短了接近一半,我们把这个前缀索引建上: ALTER TABLE employees.employees ADD INDEX `first_name_last_name4` (first_name, last_name(4)); 复制代码 此时再执行一遍按名字查询,比较分析一下与建索引前的结果: SHOW PROFILES; +----------+------------+---------------------------------------------------------------------------------+ | Query_ID | Duration | Query | +----------+------------+---------------------------------------------------------------------------------+ | 87 | 0.11941700 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' | | 90 | 0.00092400 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' | +----------+------------+---------------------------------------------------------------------------------+ 复制代码性能的提升是显著的,查询速度提高了120多倍。
前缀索引兼顾索引大小和查询速度,但是其缺点是不能用于ORDER BY和GROUP BY操作,也不能用于Covering index(即当索引本身包含查询所需全部数据时,不再访问数据文件本身)。