弗洛伊德(Floyd)算法介绍
和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名弗洛伊德算法(Floyd)计算图中各个顶点之间的最短路径迪杰斯特拉算法用于计算图中某一个顶点到其他顶点的最短路径。弗洛伊德算法 VS 迪杰斯特拉算法:迪杰斯特拉算法通过选定的被访问顶点,求出从出发访问顶点到其他顶点的最短路径;弗洛伊德算法中每一个顶点都是出发访问点,所以需要将每一个顶点看做被访问顶点,求出从每一个顶点到其他顶点的最短路径。7个顶点一次看成出发顶点.
弗洛伊德(Floyd)算法图解分析
设置顶点vi到顶点vk的最短路径已知为Lik,顶点vk到vj的最短路径已知为Lkj,顶点vi到vj的路径为Lij,则vi到vj的最短路径为:min((Lik+Lkj),Lij),vk的取值为图中所有顶点,则可获得vi到vj的最短路径
至于vi到vk的最短路径Lik或者vk到vj的最短路径Lkj,是以同样的方式获得
弗洛伊德(Floyd)算法图解分析-举例说明
图解说明: 自己和自己相连的距离为0,两个顶点之间没有相连用N表示.
假设A的前驱顶点就是A;其他的类似
第一轮循环中,以A(下标为:0)作为中间顶点,距离表和前驱关系更新为:
把A作为中间顶点,即把A作为中间顶点的所有情况进行遍历.就会得到一个新的
将A作为中间顶点的情况有:CAG(9),CAB(12),GAB(7分析如下:
以A顶点作为中间顶点是,B->A->C的距离由N->9,同理C到B;C->A->G的距离由N->12,同理G到C更换中间顶点,循环执行操作,直到所有顶点都作为中间顶点更新后,计算结束 )代码实现:
package com.qiu.floyd; import java.util.Arrays; public class FloydAlgorithm { public static void main(String[] args) { // 测试看看图是否创建成功 char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' }; //创建邻接矩阵 int[][] matrix = new int[vertex.length][vertex.length]; final int N = 65535; matrix[0] = new int[] { 0, 5, 7, N, N, N, 2 }; matrix[1] = new int[] { 5, 0, N, 9, N, N, 3 }; matrix[2] = new int[] { 7, N, 0, N, 8, N, N }; matrix[3] = new int[] { N, 9, N, 0, N, 4, N }; matrix[4] = new int[] { N, N, 8, N, 0, 5, 4 }; matrix[5] = new int[] { N, N, N, 4, 5, 0, 6 }; matrix[6] = new int[] { 2, 3, N, N, 4, 6, 0 }; //创建 Graph 对象 Graph graph = new Graph(vertex.length, matrix, vertex); //调用弗洛伊德算法 graph.floyd(); graph.show(); } } // 创建图 class Graph { private char[] vertex; // 存放顶点的数组 private int[][] dis; // 保存,从各个顶点出发到其它顶点的距离,最后的结果,也是保留在该数组 private int[][] pre;// 保存到达目标顶点的前驱顶点 // 构造器 /** * * @param length * 大小 * @param matrix * 邻接矩阵 * @param vertex * 顶点数组 */ public Graph(int length, int[][] matrix, char[] vertex) { this.vertex = vertex; this.dis = matrix; this.pre = new int[length][length]; // 对pre数组初始化, 注意存放的是前驱顶点的下标 for (int i = 0; i < length; i++) { Arrays.fill(pre[i], i); } } // 显示pre数组和dis数组 public void show() { //为了显示便于阅读,我们优化一下输出 char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' }; for (int k = 0; k < dis.length; k++) { // 先将pre数组输出的一行 for (int i = 0; i < dis.length; i++) { System.out.print(vertex[pre[k][i]] + " "); } System.out.println(); // 输出dis数组的一行数据 for (int i = 0; i < dis.length; i++) { System.out.print("("+vertex[k]+"到"+vertex[i]+"的最短路径是" + dis[k][i] + ") "); } System.out.println(); System.out.println(); } } //弗洛伊德算法, 比较容易理解,而且容易实现 public void floyd() { int len = 0; //变量保存距离 //对中间顶点遍历, k 就是中间顶点的下标 [A, B, C, D, E, F, G] for(int k = 0; k < dis.length; k++) { // //从i顶点开始出发 [A, B, C, D, E, F, G] for(int i = 0; i < dis.length; i++) { //到达j顶点 // [A, B, C, D, E, F, G] for(int j = 0; j < dis.length; j++) { len = dis[i][k] + dis[k][j];// => 求出从i 顶点出发,经过 k中间顶点,到达 j 顶点距离 if(len < dis[i][j]) {//如果len小于 dis[i][j] dis[i][j] = len;//更新距离 pre[i][j] = pre[k][j];//更新前驱顶点 } } } } } }