二值化,模板匹配

it2024-10-04  40

1二值化

1.1全局二值化:一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,最常用的方法就是设定一个全局的阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。将大于T的像素群的像素值设定为白色(或者黑色),小于T的像素群的像素值设定为黑色(或者白色)。

全局二值化,在表现图像细节方面存在很大缺陷。为了弥补这个缺陷,出现了局部二值化方法。

局部二值化的方法就是按照一定的规则将整幅图像划分为N个窗口,对这N个窗口中的每一个窗口再按照一个统一的阈值T将该窗口内的像素划分为两部分,进行二值化处理。

1.2局部自适应二值化:局部二值化也有一个缺陷。存在于那个统一阈值的选定。这个阈值是没有经过合理的运算得来,一般是取该窗口的平局值。这就导致在每一个窗口内仍然出现的是全局二值化的缺陷。为了解决这个问题,就出现了局部自适应二值化方法。

局部自适应二值化,该方法就是在局部二值化的基础之上,将阈值的设定更加合理化。该方法的阈值是通过对该窗口像素的平均值E,像素之间的差平方P,像素之间的均方根值Q等各种局部特征,设定一个参数方程进行阈值的计算,例如:T=aE+bP+c*Q,其中a,b,c是自由参数。这样得出来的二值化图像就更能表现出二值化图像中的细节。

根据阈值选取的不同,二值化的算法分为固定阈值和自适应阈值。 比较常用的二值化方法则有:双峰法、P参数法、迭代法和OTSU法等

2、图像匹配:目前图像匹配中,局部特征匹配占据了绝大部分,常用的局部特征匹配方法有Harris、SIFT、SURF、ORB等等,不同的特征点检测和匹配方法尤其独特的优势和不足;

特征点匹配经过Ransac算法优化后仍存在错误匹配点对,需要优化后的匹配结果进行量化评价;

特征点检测和匹配评价一般包括两个部分,分别为检测和匹配的评价。

(1) 特征检测(feature detection)、特征提取(extraction)和匹配(matching) 这三步,可以看做是目标检测、图像配准和拼接等工作的非常重要的一步。

(2) 特征检测、特征选择、特征提取、特征描述和特征匹配

特征检测: 根据用户的需求在图像中寻找满足定义的特征,包括角点、Blob点和边缘点。检测的结果:有或没有。 特征选择: 为了选择稳定和可靠的特征,在检测到的特征集合中,需要进一步约束,通过类似于非极大值抑制、对比度阈值约束等条件保留显著特征。选择的结果:特征子集。 特征提取: 特征选择确定稳定可靠的特征子集后,需要提取特征的位置(Location)、方向(Orientation)和尺度(Scale)信息。方向和尺度信息主要是为支持旋转和尺度变化。 特征描述: 结合特征(点)邻域信息,使用一定的描述规则来对特征区域进行量化并抽取能代表该特征的描述信息,为了后续的匹配,一般用特征向量(feature vector)表示。 特征匹配: 对提取到的特征,需要通过使用一定的方法来进一步判断对应的特征是否相同(或近似),对特征向量一般使用欧式距离或最邻近距离比(NNDR)进行判定,满足一定的条件约束,则认为两个特征相近,否则剔除。一般还会通过RANSAC进一步约束剔除误匹配点。
最新回复(0)