这是真正的开始,将图片输入进去,而不是一串噪声,输出结果是图像翻译之后的图像。
inputs generator discriminate loss optimizer train test
import tensorflow as tf import os import glob from matplotlib import pyplot as plt %matplotlib inline import time from IPython import display imgs_path = glob.glob(r'D:\BaiduNetdiskDownload\cityscapes_data\train\*.jpg') def read_jpg(path):##加载图像的参数 img = tf.io.read_file(path) img = tf.image.decode_jpeg(img, channels=3) return img def normalize(input_image, input_mask):#标准化函数 input_image = tf.cast(input_image, tf.float32)/127.5 - 1#规范到[-1,1]之间 input_mask = tf.cast(input_mask, tf.float32)/127.5 - 1 return input_image, input_mask @tf.function def load_image(image_path):#加载函数 image = read_jpg(image_path)#得到tensor w = tf.shape(image)[1]#得到宽度 w = w // 2#整除2,为了将两张图片进行分割 input_image = image[:, :w, :]#第一维 high 第二位w 第三维度 channels input_mask = image[:, w:, :] input_image = tf.image.resize(input_image, (256, 256))#使none显示出大小 input_mask = tf.image.resize(input_mask, (256, 256)) if tf.random.uniform(()) > 0.5:#有一半的几率做同时反转 uniform会产生从0到1的数据 input_image = tf.image.flip_left_right(input_image) input_mask = tf.image.flip_left_right(input_mask) input_image, input_mask = normalize(input_image, input_mask)#归一化 return input_mask, input_image dataset = tf.data.Dataset.from_tensor_slices(imgs_path)#创建dataset train = dataset.map(load_image) train=dataset.map(load_image,num_parallel_calls=tf.data.experimental.AUTOTUNE)#加载,转换图像 BATCH_SIZE = 64 BUFFER_SIZE = len(imgs_path)#机器好用len(image_path)size选64 train_dataset = train.shuffle(BUFFER_SIZE).batch(BATCH_SIZE)#乱序 train_dataset = train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)#用GPU时加载批次时和CPU会加载另一个批次 imgs_path_test = glob.glob(r'D:\BaiduNetdiskDownload\cityscapes_data\val\*.jpg') dataset_test = tf.data.Dataset.from_tensor_slices(imgs_path_test) def load_image_test(image_path):#test不需要做反转 image = read_jpg(image_path) w = tf.shape(image)[1] w = w // 2 input_image = image[:, :w, :] input_mask = image[:, w:, :] input_image = tf.image.resize(input_image, (256,256)) input_mask = tf.image.resize(input_mask, (256,256)) input_image, input_mask = normalize(input_image, input_mask) return input_mask, input_image dataset_test = dataset_test.map(load_image_test)#在test数据集上应用load image 方法 dataset_test = dataset_test.batch(BATCH_SIZE) OUTPUT_CHANNELS = 3 def downsample(filters, size, apply_batchnorm=True):#方便调用(卷积核个数,卷积核大小,是否使用BN默认添加) # initializer = tf.random_normal_initializer(0., 0.02) result = tf.keras.Sequential()#创建一个模型 result.add(#添加卷积层 tf.keras.layers.Conv2D(filters, size, strides=2, padding='same', use_bias=False))#在生成器和判别器当中,提取特征将图像小 #不使用pooling,而使用strides 生成器中引入maxpool会导致梯度不连续,从而影响训练 if apply_batchnorm:#生成器第一层不用BN result.add(tf.keras.layers.BatchNormalization()) result.add(tf.keras.layers.LeakyReLU())#生成器用LRELU return result def upsample(filters, size, apply_dropout=False):#dropout并不是为了解决过拟合问题,为了能够增加生成图像的多样性 # initializer = tf.random_normal_initializer(0., 0.02) result = tf.keras.Sequential() result.add( tf.keras.layers.Conv2DTranspose(filters, size, strides=2, padding='same', use_bias=False)) result.add(tf.keras.layers.BatchNormalization())#BN是一定添加的 if apply_dropout: result.add(tf.keras.layers.Dropout(0.5)) result.add(tf.keras.layers.ReLU())#上采样使用relu激活,下采样使用lrelu return result def Generator(): inputs = tf.keras.layers.Input(shape=[256,256,3]) down_stack = [ downsample(64, 3, apply_batchnorm=False), #G第一层不要使用BN 128*128*64 downsample(128, 3), # (bs, 64, 64, 128) downsample(256, 3), # (bs, 32, 32, 256) downsample(512, 3), # (bs, 16, 16, 512) downsample(512, 3), # (bs, 8, 8, 512) downsample(512, 3), # (bs, 4, 4, 512) downsample(512, 3), # (bs, 2, 2, 512) downsample(512, 3), # (bs, 1, 1, 512) ] up_stack = [ upsample(512, 3, apply_dropout=True), # (bs, 2, 2, 1024) upsample(512, 3, apply_dropout=True), # (bs, 4, 4, 512) upsample(512, 3, apply_dropout=True), # (bs, 8, 8, 512) upsample(512, 3), # (bs, 16, 16, 512) upsample(256, 3,), # (bs, 32, 32, 256) upsample(128, 3,), # (bs, 64, 64, 128) upsample(64, 3), # (bs, 128, 128, 64) ] # initializer = tf.random_normal_initializer(0., 0.02) last = tf.keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 3, strides=2, padding='same', activation='tanh') # (bs, 64, 64, 3) x = inputs#x可变 输入不会变 # Downsampling through the model skips = []#Unet中存在skip connection 我们把中间采样的值放到一个空列表skip中 for down in down_stack:#对列表进行迭代 x = down(x) skips.append(x) skips = reversed(skips[:-1])#我们需要反转一下才能够调用,【:-1】去掉最后一层 # Upsampling and establishing the skip connections for up, skip in zip(up_stack, skips):# up skip为变量 x = up(x) x = tf.keras.layers.Concatenate()([x, skip])#将x与skip中保留的结果进行合并 #concatenate与add不用 add是单纯的像素相加 x为128*128*128 x = last(x) return tf.keras.Model(inputs=inputs, outputs=x) generator = Generator() LAMBDA = 10#超参数 def generator_loss(disc_generated_output, gen_output, target): gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output) # mean absolute errorl1损失 重建损失 l1_loss = tf.reduce_mean(tf.abs(target - gen_output))#tf.reduce_mean生成标量值 total_gen_loss = gan_loss + (LAMBDA * l1_loss)#增加l1损失的比重 return total_gen_loss, gan_loss, l1_loss def Discriminator():#判别器要输入成对的图像 生成的图像轮廓信息要接近输入图像 #因为我们的目的是仅仅对图像的色彩方法进行改变 #论文中使用patch-D使用格子将图像分为小格子,然后对小格子的图像分别进行判断 # initializer = tf.random_normal_initializer(0., 0.02) inp = tf.keras.layers.Input(shape=[256, 256, 3], name='input_image') tar = tf.keras.layers.Input(shape=[256, 256, 3], name='target_image') x = tf.keras.layers.concatenate([inp, tar]) # (bs, 64, 64, channels*2) (256*256*6)小写可以用参数写 down1 = downsample(64, 3, False)(x) # (bs, 128, 128, 64) down2 = downsample(128, 3)(down1) # (bs, 64, 64, 128) down3 = downsample(256, 3)(down2) # (bs, 32, 32, 256) conv = tf.keras.layers.Conv2D(512, 3, strides=1, padding='same', use_bias=False)(down3) # (bs, 31,31,512)#跨度为1,图像不会变小 batchnorm1 = tf.keras.layers.BatchNormalization()(conv) leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1) last = tf.keras.layers.Conv2D(1, 3, strides=1)(leaky_relu) # (bs, 30, 30, 1) return tf.keras.Model(inputs=[inp, tar], outputs=last)#对结果进行判断 discriminator = Discriminator() loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)#输入未激活数据 def discriminator_loss(disc_real_output, disc_generated_output): real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output) #真实判定1 生成判定0 generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output) total_disc_loss = real_loss + generated_loss return total_disc_loss generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) def generate_images(model, test_input, tar):# tar真实图像 绘图函数 prediction = model(test_input, training=True) plt.figure(figsize=(15, 15))创建画布 display_list = [test_input[0], tar[0], prediction[0]] title = ['Input Image', 'Ground Truth', 'Predicted Image'] for i in range(3): plt.subplot(1, 3, i+1) plt.title(title[i]) # getting the pixel values between [0, 1] to plot it. plt.imshow(display_list[i] * 0.5 + 0.5)#因为图像都归一到-1,1之间了,需要还原成原图利用*0.5+0.5 #因为归一话的时候是先减去平均值0.5 ,然后再除以标准偏差0.5 那么反归一化就是先乘以0.5,再加0.5。 plt.axis('off') plt.show() EPOCHS = 110 @tf.function def train_step(input_image, target, epoch):#接受一个批次的数据,然后优化我们的变量 with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:#两个模型,所以调用两个上下文管理器 gen_output = generator(input_image, training=True) disc_real_output = discriminator([input_image, target], training=True) disc_generated_output = discriminator([input_image, gen_output], training=True)#对于生成的图像,判别器的结果 gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(disc_generated_output, gen_output, target) disc_loss = discriminator_loss(disc_real_output, disc_generated_output) #梯度 generator_gradients = gen_tape.gradient(gen_total_loss, generator.trainable_variables) discriminator_gradients = disc_tape.gradient(disc_loss, discriminator.trainable_variables) #优化 generator_optimizer.apply_gradients(zip(generator_gradients, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(discriminator_gradients, discriminator.trainable_variables)) def fit(train_ds, epochs, test_ds): for epoch in range(epochs+1): if epoch%10 == 0:# for example_input, example_target in test_ds.take(1):#从test 数据集里面取出一个批次的图像 generate_images(generator, example_input, example_target) print("Epoch: ", epoch) for n, (input_image, target) in train_ds.enumerate(): if n%10 == 0: print('.', end='') train_step(input_image, target, epoch) print() fit(train_dataset, EPOCHS, dataset_test)