三角函数公式大全(速查手册)

it2024-04-05  60

三角函数公式大全

高中版(适用)

两角和公式

s i n ( A + B ) = s i n A c o s B + c o s A s i n B sin(A+B) = sinAcosB+cosAsinB sin(A+B)=sinAcosB+cosAsinB s i n ( A − B ) = s i n A c o s B − c o s A s i n B sin(A-B) = sinAcosB-cosAsinB sin(AB)=sinAcosBcosAsinB c o s ( A + B ) = c o s A c o s B − s i n A s i n B cos(A+B) = cosAcosB-sinAsinB cos(A+B)=cosAcosBsinAsinB c o s ( A − B ) = c o s A c o s B + s i n A s i n B cos(A-B) = cosAcosB+sinAsinB cos(AB)=cosAcosB+sinAsinB t a n ( A + B ) = ( t a n A + t a n B ) / ( 1 − t a n A t a n B ) tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A+B)=(tanA+tanB)/(1tanAtanB) t a n ( A − B ) = ( t a n A − t a n B ) / ( 1 + t a n A t a n B ) tan(A-B) = (tanA-tanB)/(1+tanAtanB) tan(AB)=(tanAtanB)/(1+tanAtanB) c o t ( A + B ) = ( c o t A c o t B − 1 ) / ( c o t B + c o t A ) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A+B)=(cotAcotB1)/(cotB+cotA) c o t ( A − B ) = ( c o t A c o t B + 1 ) / ( c o t B − c o t A ) cot(A-B) = (cotAcotB+1)/(cotB-cotA) cot(AB)=(cotAcotB+1)/(cotBcotA)

倍角公式

t a n 2 A = 2 t a n A / ( 1 − t a n ² A ) tan2A = 2tanA/(1-tan² A) tan2A=2tanA/(1tan²A) S i n 2 A = 2 S i n A ∗ C o s A Sin2A=2SinA*CosA Sin2A=2SinACosA C o s 2 A = C o s 2 A – S i n ² A = 2 C o s ² A − 1 Cos2A = Cos^2 A–Sin² A=2Cos² A-1 Cos2A=Cos2ASin²A=2Cos²A1

三倍角公式

s i n 3 A = 3 s i n A − 4 ( s i n A ) ³ sin3A = 3sinA-4(sinA)³ sin3A=3sinA4(sinA)³ c o s 3 A = 4 ( c o s A ) ³ − 3 c o s A cos3A = 4(cosA)³ -3cosA cos3A=4(cosA)³3cosA t a n 3 a = t a n a ∗ t a n ( π / 3 + a ) ∗ t a n ( π / 3 − a ) tan3a = tan a * tan(π/3+a)* tan(π/3-a) tan3a=tanatan(π/3+a)tan(π/3a)

半角公式

s i n ( A / 2 ) = ( 1 – c o s A ) / 2 sin(A/2) = \sqrt{(1–cosA)/2} sin(A/2)=(1cosA)/2 c o s ( A / 2 ) = ( 1 + c o s A ) / 2 cos(A/2) = \sqrt{(1+cosA)/2} cos(A/2)=(1+cosA)/2 t a n ( A / 2 ) = ( 1 – c o s A ) / ( 1 + c o s A ) tan(A/2) = \sqrt{(1–cosA)/(1+cosA)} tan(A/2)=(1cosA)/(1+cosA) c o t ( A / 2 ) = ( 1 + c o s A ) / ( 1 − c o s A ) cot(A/2) = \sqrt{(1+cosA)/(1-cosA)} cot(A/2)=(1+cosA)/(1cosA) t a n ( A / 2 ) = ( 1 – c o s A ) / s i n A = s i n A / ( 1 + c o s A ) tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA) tan(A/2)=(1cosA)/sinA=sinA/(1+cosA)

和差化积

s i n ( a ) + s i n ( b ) = 2 s i n [ ( a + b ) / 2 ] c o s [ ( a − b ) / 2 ] sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)+sin(b)=2sin[(a+b)/2]cos[(ab)/2] s i n ( a ) − s i n ( b ) = 2 c o s [ ( a + b ) / 2 ] s i n [ ( a − b ) / 2 ] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] sin(a)sin(b)=2cos[(a+b)/2]sin[(ab)/2] c o s ( a ) + c o s ( b ) = 2 c o s [ ( a + b ) / 2 ] c o s [ ( a − b ) / 2 ] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)+cos(b)=2cos[(a+b)/2]cos[(ab)/2] c o s ( a ) − c o s ( b ) = − 2 s i n [ ( a + b ) / 2 ] s i n [ ( a − b ) / 2 ] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] cos(a)cos(b)=2sin[(a+b)/2]sin[(ab)/2] t a n A + t a n B = s i n ( A + B ) / c o s A c o s B tanA+tanB=sin(A+B)/cosAcosB tanA+tanB=sin(A+B)/cosAcosB

积化和差

s i n ( a ) s i n ( b ) = − 1 / 2 ∗ [ c o s ( a + b ) − c o s ( a − b ) ] sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] sin(a)sin(b)=1/2[cos(a+b)cos(ab)] c o s ( a ) c o s ( b ) = 1 / 2 ∗ [ c o s ( a + b ) + c o s ( a − b ) ] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] cos(a)cos(b)=1/2[cos(a+b)+cos(ab)] s i n ( a ) c o s ( b ) = 1 / 2 ∗ [ s i n ( a + b ) + s i n ( a − b ) ] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] sin(a)cos(b)=1/2[sin(a+b)+sin(ab)] c o s ( a ) s i n ( b ) = 1 / 2 ∗ [ s i n ( a + b ) − s i n ( a − b ) ] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] cos(a)sin(b)=1/2[sin(a+b)sin(ab)]

诱导公式

s i n ( − a ) = − s i n ( a ) sin(-a) = -sin(a) sin(a)=sin(a) c o s ( − a ) = c o s ( a ) cos(-a) = cos(a) cos(a)=cos(a) s i n ( π / 2 − a ) = c o s ( a ) sin(π/2-a) = cos(a) sin(π/2a)=cos(a) c o s ( π / 2 − a ) = s i n ( a ) cos(π/2-a) = sin(a) cos(π/2a)=sin(a) s i n ( π / 2 + a ) = c o s ( a ) sin(π/2+a) = cos(a) sin(π/2+a)=cos(a) c o s ( π / 2 + a ) = − s i n ( a ) cos(π/2+a) = -sin(a) cos(π/2+a)=sin(a) s i n ( π − a ) = s i n ( a ) sin(π-a) = sin(a) sin(πa)=sin(a) c o s ( π − a ) = − c o s ( a ) cos(π-a) = -cos(a) cos(πa)=cos(a) s i n ( π + a ) = − s i n ( a ) sin(π+a) = -sin(a) sin(π+a)=sin(a) c o s ( π + a ) = − c o s ( a ) cos(π+a) = -cos(a) cos(π+a)=cos(a) t g A = t a n A = s i n A / c o s A tgA=tanA = sinA/cosA tgA=tanA=sinA/cosA

万能公式

s i n ( a ) = [ 2 t a n ( a / 2 ) ] / 1 + [ t a n ( a / 2 ) ] ² sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²} sin(a)=[2tan(a/2)]/1+[tan(a/2)]² c o s ( a ) = 1 − [ t a n ( a / 2 ) ] 2 / 1 + [ t a n ( a / 2 ) ] ² cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²} cos(a)=1[tan(a/2)]2/1+[tan(a/2)]² t a n ( a ) = [ 2 t a n ( a / 2 ) ] / 1 − [ t a n ( a / 2 ) ] 2 tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2} tan(a)=[2tan(a/2)]/1[tan(a/2)]2

其它公式

a • s i n ( a ) + b • c o s ( a ) = [ ( a ² + b ² ) ] ∗ s i n ( a + c ) [ 其 中 , t a n ( c ) = b / a ] a•sin(a)+b•cos(a) = [\sqrt{(a²+b²)}]*sin(a+c) [其中,tan(c)=b/a] asin(a)+bcos(a)=[(a²+b²) ]sin(a+c)[tan(c)=b/a] a • s i n ( a ) − b • c o s ( a ) = [ √ ( a ² + b ² ) ] ∗ c o s ( a − c ) [ 其 中 , t a n ( c ) = a / b ] a•sin(a)-b•cos(a) = [√{(a²+b²)}]*cos(a-c) [其中,tan(c)=a/b] asin(a)bcos(a)=[(a²+b²)]cos(ac)[tan(c)=a/b] 1 + s i n ( a ) = [ s i n ( a / 2 ) + c o s ( a / 2 ) ] ² 1+sin(a) = [sin(a/2)+cos(a/2)]² 1+sin(a)=[sin(a/2)+cos(a/2)]² 1 − s i n ( a ) = [ s i n ( a / 2 ) − c o s ( a / 2 ) ] ² 1-sin(a) = [sin(a/2)-cos(a/2)]² 1sin(a)=[sin(a/2)cos(a/2)]²

其他非重点三角函数

c s c ( a ) = 1 / s i n ( a ) csc(a) = 1/sin(a) csc(a)=1/sin(a) s e c ( a ) = 1 / c o s ( a ) sec(a) = 1/cos(a) sec(a)=1/cos(a)

双曲函数

s i n h ( a ) = [ e a − e − a ] / 2 sinh(a) = [e^a-e^{-a}]/2 sinh(a)=[eaea]/2 c o s h ( a ) = [ e a + e ( − a ) ] / 2 cosh(a) = [e^{a}+e^{(-a)}]/2 cosh(a)=[ea+e(a)]/2 t g h ( a ) = s i n h ( a ) / c o s h ( a ) tg h(a) = sin h(a)/cos h(a) tgh(a)=sinh(a)/cosh(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: s i n ( 2 k π + α ) = s i n α sin(2kπ+α)= sinα sin2kπα=sinα c o s ( 2 k π + α ) = c o s α cos(2kπ+α)= cosα cos2kπα=cosα t a n ( 2 k π + α ) = t a n α tan(2kπ+α)= tanα tan2kπα=tanα c o t ( 2 k π + α ) = c o t α cot(2kπ+α)= cotα cot2kπα=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: s i n ( π + α ) = − s i n α sin(π+α)= -sinα sinπα=sinα c o s ( π + α ) = − c o s α cos(π+α)= -cosα cosπα=cosα t a n ( π + α ) = t a n α tan(π+α)= tanα tanπα=tanα c o t ( π + α ) = c o t α cot(π+α)= cotα cotπα=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: s i n ( − α ) = − s i n α sin(-α)= -sinα sinα=sinα c o s ( − α ) = c o s α cos(-α)= cosα cosα=cosα t a n ( − α ) = − t a n α tan(-α)= -tanα tanα=tanα c o t ( − α ) = − c o t α cot(-α)= -cotα cotα=cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: s i n ( π − α ) = s i n α sin(π-α)= sinα sinπα=sinα c o s ( π − α ) = − c o s α cos(π-α)= -cosα cosπα=cosα t a n ( π − α ) = − t a n α tan(π-α)= -tanα tanπα=tanα c o t ( π − α ) = − c o t α cot(π-α)= -cotα cotπα=cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: s i n ( 2 π − α ) = − s i n α sin(2π-α)= -sinα sin2πα=sinα c o s ( 2 π − α ) = c o s α cos(2π-α)= cosα cos2πα=cosα t a n ( 2 π − α ) = − t a n α tan(2π-α)= -tanα tan2πα=tanα c o t ( 2 π − α ) = − c o t α cot(2π-α)= -cotα cot2πα=cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: s i n ( π / 2 + α ) = c o s α sin(π/2+α)= cosα sinπ/2+α=cosα c o s ( π / 2 + α ) = − s i n α cos(π/2+α)= -sinα cosπ/2+α=sinα t a n ( π / 2 + α ) = − c o t α tan(π/2+α)= -cotα tanπ/2+α=cotα c o t ( π / 2 + α ) = − t a n α cot(π/2+α)= -tanα cotπ/2+α=tanα s i n ( π / 2 − α ) = c o s α sin(π/2-α)= cosα sinπ/2α=cosα c o s ( π / 2 − α ) = s i n α cos(π/2-α)= sinα cosπ/2α=sinα t a n ( π / 2 − α ) = c o t α tan(π/2-α)= cotα tanπ/2α=cotα c o t ( π / 2 − α ) = t a n α cot(π/2-α)= tanα cotπ/2α=tanα s i n ( 3 π / 2 + α ) = − c o s α sin(3π/2+α)= -cosα sin3π/2+α=cosα c o s ( 3 π / 2 + α ) = s i n α cos(3π/2+α)= sinα cos3π/2+α=sinα t a n ( 3 π / 2 + α ) = − c o t α tan(3π/2+α)= -cotα tan3π/2+α=cotα c o t ( 3 π / 2 + α ) = − t a n α cot(3π/2+α)= -tanα cot3π/2+α=tanα s i n ( 3 π / 2 − α ) = − c o s α sin(3π/2-α)= -cosα sin3π/2α=cosα c o s ( 3 π / 2 − α ) = − s i n α cos(3π/2-α)= -sinα cos3π/2α=sinα t a n ( 3 π / 2 − α ) = c o t α tan(3π/2-α)= cotα tan3π/2α=cotα c o t ( 3 π / 2 − α ) = t a n α cot(3π/2-α)= tanα cot3π/2α=tanα

最新回复(0)