根据电磁波在各向异性媒质中传播的极化旋转现象:
由于地球电离层是各向异性磁导率媒质的一种,所以在卫星通信或者卫星对地遥感探测中,当线极化电磁波在穿过地球电离层的过程中,会发生极化旋转,虽然电离层对电磁波的影响随着电磁波频率的升而降低,但对于工作在L波段的的卫星导航系统而言,如果发射天线采用线极化方式,我们的接收天线就有可能接收不到完整的信息,所以一般采用圆极化。
高斯定理:任何封闭面包含的电荷所产生的电场的散度正好等于封闭面所包含电荷的总和
由题可知,该入射电场为无源场,若要满足高斯定理,则: ▽ ⋅ E ⃗ i = 0 \triangledown\cdot\vec{E}_i=0 ▽⋅E i=0
▽ = x ^ ∂ ∂ x + y ^ ∂ ∂ y + z ^ ∂ ∂ z \triangledown=\hat{x}\frac{\partial}{\partial x}+\hat{y}\frac{\partial}{\partial y}+\hat{z }\frac{\partial}{\partial z} ▽=x^∂x∂+y^∂y∂+z^∂z∂
▽ ⋅ E ⃗ i = − E 0 cos θ k x sin ( k x x − k z z − ω t ) + E 0 sin θ k z sin ( k x x − k z z − ω t ) \triangledown\cdot\vec{E}_i= -E_0\cos\theta k_x\sin(k_xx-k_zz-\omega t)+ E_0\sin\theta k_z\sin(k_xx-k_zz-\omega t) ▽⋅E i=−E0cosθkxsin(kxx−kzz−ωt)+E0sinθkzsin(kxx−kzz−ωt)
由图可知,入射波的传播矢量为:
k ^ = k x x ^ − k z z ^ \hat{k}=k_x\hat{x}-k_z\hat{z} k^=kxx^−kzz^
k x = k i sin θ k_x=k_i\sin\theta kx=kisinθ
k z = k i cos θ k_z=k_i\cos\theta kz=kicosθ
将此表达式带入上式,得:
▽ ⋅ E ⃗ i = E 0 sin ( k x x − k z z − ω t ) ( − k i cos θ sin θ + k i cos θ sin θ ) = 0 \triangledown\cdot\vec{E}_i=E_0\sin(k_xx-k_zz-\omega t) (-k_i\cos\theta\sin\theta+k_i\cos\theta\sin\theta)=0 ▽⋅E i=E0sin(kxx−kzz−ωt)(−kicosθsinθ+kicosθsinθ)=0
故该入射电场满足高斯定理。
将入射电场进行分解:
E i ⃗ = E 0 ( x ^ cos θ + y ^ + z ^ sin θ ) cos ( k x x − k z z − ω t ) = E 0 cos θ cos ( k x x − k z z − ω t ) x ^ + E 0 cos ( k x x − k z z − ω t ) y ^ + E 0 sin θ cos ( k x x − k z z − ω t ) z ^ \begin{aligned}\vec{E_i}&= E_0(\hat{x}\cos\theta+\hat{y}+\hat{z}\sin\theta)\cos(k_xx-k_zz-\omega t)\\&= E_0\cos\theta\cos(k_xx-k_zz-\omega t)\hat{x}\\&+ E_0\cos(k_xx-k_zz-\omega t)\hat{y}\\&+ E_0\sin\theta\cos(k_xx-k_zz-\omega t)\hat{z}\\ \end{aligned} Ei =E0(x^cosθ+y^+z^sinθ)cos(kxx−kzz−ωt)=E0cosθcos(kxx−kzz−ωt)x^+E0cos(kxx−kzz−ωt)y^+E0sinθcos(kxx−kzz−ωt)z^
T E TE TE波分量: E ⃗ i y = E 0 cos ( k x x − k z z − ω t ) y ^ \vec{E}_{iy}=E_0\cos(k_xx-k_zz-\omega t)\hat{y} E iy=E0cos(kxx−kzz−ωt)y^
T M TM TM波分量: E ⃗ i x = E 0 cos θ cos ( k x x − k z z − ω t ) x ^ , E ⃗ i z = E 0 sin θ cos ( k x x − k z z − ω t ) z ^ \vec{E}_{ix}=E_0\cos\theta\cos(k_xx-k_zz-\omega t)\hat{x}, \vec{E}_{iz}=E_0\sin\theta\cos(k_xx-k_zz-\omega t)\hat{z} E ix=E0cosθcos(kxx−kzz−ωt)x^,E iz=E0sinθcos(kxx−kzz−ωt)z^
入射电场为圆极化:
T E TE TE波的电场矢量垂直于入射平面,为 H H H极化
T M TM TM波的电场矢量平行于入射平面,为 V V V极化
该入射电场分解为 T E TE TE波和 T M TM TM波分量,所以为圆极化。
反射电场: R T E = ε cos θ − ε 0 cos θ t ε cos θ + ε 0 cos θ t R^{TE}=\frac{\sqrt{\varepsilon}\cos\theta-\sqrt{\varepsilon_0}\cos\theta_t}{\sqrt{\varepsilon}\cos\theta+\sqrt{\varepsilon_0}\cos\theta_t} RTE=ε cosθ+ε0 cosθtε cosθ−ε0 cosθt
R T M = ε 0 cos θ − ε cos θ t ε 0 cos θ + ε cos θ t R^{TM}=\frac{\sqrt{\varepsilon_0}\cos\theta-\sqrt{\varepsilon}\cos\theta_t}{\sqrt{\varepsilon_0}\cos\theta+\sqrt{\varepsilon}\cos\theta_t} RTM=ε0 cosθ+ε cosθtε0 cosθ−ε cosθt
θ t = π 2 − θ \theta_t=\frac{\pi}{2}-\theta θt=2π−θ
R T E = ε cos θ − ε 0 sin θ ε cos θ + ε 0 sin θ R^{TE}=\frac{\sqrt{\varepsilon}\cos\theta-\sqrt{\varepsilon_0}\sin\theta}{\sqrt{\varepsilon}\cos\theta+\sqrt{\varepsilon_0}\sin\theta} RTE=ε cosθ+ε0 sinθε cosθ−ε0 sinθ
R T M = ε 0 cos θ − ε sin θ ε 0 cos θ + ε sin θ R^{TM}=\frac{\sqrt{\varepsilon_0}\cos\theta-\sqrt{\varepsilon}\sin\theta}{\sqrt{\varepsilon_0}\cos\theta+\sqrt{\varepsilon}\sin\theta} RTM=ε0 cosθ+ε sinθε0 cosθ−ε sinθ
E ⃗ r = T T E E ⃗ i y + k r cos θ ω ε R T M E ⃗ i x − k r sin θ ω ε R T M E ⃗ i z \vec{E}_r= T^{TE}\vec{E}_{iy}+ \frac{k_r\cos\theta}{\omega\varepsilon}R^{TM}\vec{E}_{ix}- \frac{k_r\sin\theta}{\omega\varepsilon}R^{TM}\vec{E}_{iz} E r=TTEE iy+ωεkrcosθRTME ix−ωεkrsinθRTME iz
透射电场: T T E = 2 ε cos θ ε cos θ + ε 0 cos θ t T^{TE}=\frac{2\sqrt{\varepsilon}\cos\theta}{\sqrt{\varepsilon}\cos\theta+\sqrt{\varepsilon_0}\cos\theta_t} TTE=ε cosθ+ε0 cosθt2ε cosθ
T T M = 2 ε 0 cos θ ε 0 cos θ + ε cos θ t T^{TM}=\frac{2\sqrt{\varepsilon_0}\cos\theta}{\sqrt{\varepsilon_0}\cos\theta+\sqrt{\varepsilon}\cos\theta_t} TTM=ε0 cosθ+ε cosθt2ε0 cosθ
θ t = π 2 − θ \theta_t=\frac{\pi}{2}-\theta θt=2π−θ
T T E = 2 ε cos θ ε cos θ + ε 0 sin θ T^{TE}=\frac{2\sqrt{\varepsilon}\cos\theta}{\sqrt{\varepsilon}\cos\theta+\sqrt{\varepsilon_0}\sin\theta} TTE=ε cosθ+ε0 sinθ2ε cosθ
T T M = 2 ε 0 cos θ ε 0 cos θ + ε sin θ T^{TM}=\frac{2\sqrt{\varepsilon_0}\cos\theta}{\sqrt{\varepsilon_0}\cos\theta+\sqrt{\varepsilon}\sin\theta} TTM=ε0 cosθ+ε sinθ2ε0 cosθ
E ⃗ t = T T E E ⃗ i y − k t sin θ ω ε 0 E ⃗ i x + k t cos θ ω ε 0 E ⃗ i z \vec{E}_t= T^{TE}\vec{E}^{iy}- \frac{k_t\sin\theta}{\omega\varepsilon_0}\vec{E}_{ix}+ \frac{k_t\cos\theta}{\omega\varepsilon_0}\vec{E}_{iz} E t=TTEE iy−ωε0ktsinθE ix+ωε0ktcosθE iz
当入射角小于临界角 θ < θ c \theta<\theta_c θ<θc时:反射波和透射波均为圆极化波。
由波的能量始终包含在介质板内部可知:
在空气与介质板的边界发生了全透射,在介质板内部发生了全反射
那么就有: θ i = tan − 1 ε r / ε 0 \theta_i=\tan^{-1}\sqrt{\varepsilon_r/\varepsilon_0} θi=tan−1εr/ε0
当平板介质的介电常数 ε r \varepsilon_r εr发生变化时,发生全透射的角度 θ i \theta_i θi也会发生变化
θ t = π 2 − θ i = π 2 − tan − 1 ε r / ε 0 \theta_t=\frac{\pi}{2}-\theta_i=\frac{\pi}{2}-\tan^{-1}\sqrt{\varepsilon_r/\varepsilon_0} θt=2π−θi=2π−tan−1εr/ε0
θ r = π 2 − θ t = tan − 1 ε r / ε 0 \theta_r=\frac{\pi}{2}-\theta_t=\tan^{-1}\sqrt{\varepsilon_r/\varepsilon_0} θr=2π−θt=tan−1εr/ε0
只需要满足: θ r > θ c , 即 可 \theta_r>\theta_c,即可 θr>θc,即可
由折射定律,可知:
μ ε r sin θ c = μ ε 0 sin 9 0 ∘ \sqrt{\mu\varepsilon_r}\sin\theta_c=\sqrt{\mu\varepsilon_0}\sin90^\circ μεr sinθc=με0 sin90∘
θ c = sin − 1 ε 0 / ε r \theta_c=\sin^{-1}\sqrt{\varepsilon_0/\varepsilon_r} θc=sin−1ε0/εr
即
tan − 1 ε r / ε 0 > sin − 1 ε 0 / ε r \tan^{-1}\sqrt{\varepsilon_r/\varepsilon_0}>\sin^{-1}\sqrt{\varepsilon_0/\varepsilon_r} tan−1εr/ε0 >sin−1ε0/εr
通过逼近,得到:
ε r / ε 0 > 1.2725 \sqrt{\varepsilon_r/\varepsilon_0}>1.2725 εr/ε0 >1.2725
ε r > 1.62 ε 0 \varepsilon_r>1.62\varepsilon_0 εr>1.62ε0
当反射波没有 T M TM TM波时,说明此时 T M TM TM波发生了全透射.
那么就有: θ i = tan − 1 ε r / ε 0 \theta_i=\tan^{-1}\sqrt{\varepsilon_r/\varepsilon_0} θi=tan−1εr/ε0 真空中的介电常数 ε 0 = 1 \varepsilon_0=1 ε0=1
根据题意可知: S = 100 tan θ i + 10 tan θ r S=100\tan\theta_i+10\tan\theta_r S=100tanθi+10tanθr
我们有: θ i = θ r \theta_i=\theta_r θi=θr S = 100 × 4 + 10 × 4 = 440 m S=100\times4+10\times4=440m S=100×4+10×4=440m
T M TM TM波
假设一 T M TM TM波,其磁场分量只有 H y H_y Hy分量,从媒质为 μ 1 , ε 1 \mu_1,\varepsilon_1 μ1,ε1的半空间以 θ i \theta_i θi角度入射到媒质为 μ 2 , ε 2 \mu_2,\varepsilon_2 μ2,ε2的半空间。 H ⃗ = H y y ^ (1-1) \vec{H}=H_y\hat{y} \tag{1-1} H =Hyy^(1-1) 假设 T M TM TM波的幅度已经归一化: H ⃗ = e j ( − k x x + k z z − ω t ) y ^ (1-2) \vec{H}=e^{j(-k_xx+k_zz-\omega t)}\hat{y} \tag{1-2} H =ej(−kxx+kzz−ωt)y^(1-2) H y = e j ( − k x x + k z z − ω t ) (1-3) H_y=e^{j(-k_xx+k_zz-\omega t)} \tag{1-3} Hy=ej(−kxx+kzz−ωt)(1-3) 根据 M a x w e l l Maxwell Maxwell方程组: ▽ × H ⃗ = ∂ D ⃗ ∂ t = − j ω D ⃗ = − j ω ε E ⃗ (1-4) \triangledown\times\vec{H}= \frac{\partial\vec{D}}{\partial t}= -j\omega\vec{D}= -j\omega\varepsilon\vec{E} \tag{1-4} ▽×H =∂t∂D =−jωD =−jωεE (1-4) 假设电磁场为简谐场: E ⃗ = j ω ε ▽ × H ⃗ (1-5) \vec{E}=\frac{j}{\omega\varepsilon}\triangledown\times\vec{H} \tag{1-5} E =ωεj▽×H (1-5) 根据式[1-5],可以推导出 E ⃗ \vec{E} E 有两个分量 E x E_x Ex和 E z E_z Ez
入射波的传播常数矢量为: k ^ = − k x x ^ + k z z ^ \hat{k}=-k_x\hat{x}+k_z\hat{z} k^=−kxx^+kzz^ 根据式[1-3],取实部,得入射电磁场: { H i y = cos ( − k i x x + k i z z − ω t ) E i x = ( k i z / ω ε 1 ) cos ( − k i x x + k i z z − ω t ) E i z = ( k i x / ω ε 1 ) cos ( − k i x x + k i z z − ω t ) (2-1) \left\{\begin{matrix} H_{iy} & = &\cos(-k_{ix}x+k_{iz}z-\omega t) \\ E_{ix} & = &(k_{iz}/\omega\varepsilon_1)\cos(-k_{ix}x+k_{iz}z-\omega t)\\ E_{iz} & = &(k_{ix}/\omega\varepsilon_1)\cos(-k_{ix}x+k_{iz}z-\omega t)\\ \end{matrix} \right. \tag{2-1} ⎩⎨⎧HiyEixEiz===cos(−kixx+kizz−ωt)(kiz/ωε1)cos(−kixx+kizz−ωt)(kix/ωε1)cos(−kixx+kizz−ωt)(2-1) 进而可以得到反射电磁场和透射电磁场: { H r y = R T M cos ( − k r x x + k r z z − ω t ) E r x = ( k r z / ω ε 1 ) R T M cos ( − k i r x + k r z z − ω t ) E r z = ( k r x / ω ε 1 ) R T M cos ( − k r x x + k r z z − ω t ) (2-2) \left\{\begin{matrix} H_{ry} & = &R^{TM}\cos(-k_{rx}x+k_{rz}z-\omega t) \\ E_{rx} & = &(k_{rz}/\omega\varepsilon_1)R^{TM}\cos(-k_{ir}x+k_{rz}z-\omega t)\\ E_{rz} & = &(k_{rx}/\omega\varepsilon_1)R^{TM}\cos(-k_{rx}x+k_{rz}z-\omega t)\\ \end{matrix} \right. \tag{2-2} ⎩⎨⎧HryErxErz===RTMcos(−krxx+krzz−ωt)(krz/ωε1)RTMcos(−kirx+krzz−ωt)(krx/ωε1)RTMcos(−krxx+krzz−ωt)(2-2) { H t y = T T M cos ( − k t x x + k t z z − ω t ) E t x = ( k t z / ω ε 2 ) T T M cos ( − k t x x + k t z z − ω t ) E t z = ( k t x / ω ε 2 ) T T M cos ( − k t x x + k t z z − ω t ) (2-3) \left\{\begin{matrix} H_{ty} & = &T^{TM}\cos(-k_{tx}x+k_{tz}z-\omega t) \\ E_{tx} & = &(k_{tz}/\omega\varepsilon_2)T^{TM}\cos(-k_{tx}x+k_{tz}z-\omega t)\\ E_{tz} & = &(k_{tx}/\omega\varepsilon_2)T^{TM}\cos(-k_{tx}x+k_{tz}z-\omega t)\\ \end{matrix} \right. \tag{2-3} ⎩⎨⎧HtyEtxEtz===TTMcos(−ktxx+ktzz−ωt)(ktz/ωε2)TTMcos(−ktxx+ktzz−ωt)(ktx/ωε2)TTMcos(−ktxx+ktzz−ωt)(2-3) 根据电磁场在分界面( x = 0 x=0 x=0)上的边界条件: E i z ∣ x = 0 + E r z ∣ x = 0 = E t z ∣ x = 0 (电场的切向分量连续) E_{iz}|_{x=0}+E_{rz}|_{x=0}=E_{tz}|_{x=0} \tag{电场的切向分量连续} Eiz∣x=0+Erz∣x=0=Etz∣x=0(电场的切向分量连续) H i z ∣ x = 0 + H r z ∣ x = 0 = H t z ∣ x = 0 (磁场的切向分量连续) H_{iz}|_{x=0}+H_{rz}|_{x=0}=H_{tz}|_{x=0} \tag{磁场的切向分量连续} Hiz∣x=0+Hrz∣x=0=Htz∣x=0(磁场的切向分量连续) 所以有: k i z = k r z = k t z (3-1) k_{iz}=k_{rz}=k_{tz} \tag{3-1} kiz=krz=ktz(3-1) k 1 x ω ε 1 + R T M k 1 z ω ε 1 = T T M k 2 x ω ε 2 (3-2) \frac{k_{1x}}{\omega\varepsilon_1}+R^{TM}\frac{k_{1z}}{\omega\varepsilon_1}=T^{TM}\frac{k_{2x}}{\omega\varepsilon_2} \tag{3-2} ωε1k1x+RTMωε1k1z=TTMωε2k2x(3-2) 1 + R T M = T T M (3-3) 1+R^{TM}=T^{TM} \tag{3-3} 1+RTM=TTM(3-3) 由式[3-1]、[3-2]、[3-2],可得反射系数和透射系数: R T M = ε 2 cos θ i − ε 1 cos θ t ε 2 cos θ i + ε 1 cos θ t (4-1) R^{TM}=\frac{\sqrt{\varepsilon_2}\cos\theta_i-\sqrt{\varepsilon_1}\cos\theta_t}{\sqrt{\varepsilon_2}\cos\theta_i+\sqrt{\varepsilon_1}\cos\theta_t} \tag{4-1} RTM=ε2 cosθi+ε1 cosθtε2 cosθi−ε1 cosθt(4-1) T T M = 2 ε 2 cos θ i ε 2 cos θ i + ε 1 cos θ t (4-2) T^{TM}=\frac{2\sqrt{\varepsilon_2}\cos\theta_i}{\sqrt{\varepsilon_2}\cos\theta_i+\sqrt{\varepsilon_1}\cos\theta_t} \tag{4-2} TTM=ε2 cosθi+ε1 cosθt2ε2 cosθi(4-2)
T E TE TE波
同理可证:
入射电磁场: { E i y = cos ( − k i x x + k i z z − ω t ) H i x = ( k i z / ω μ 1 ) cos ( − k i x x + k i z z − ω t ) H i z = ( k i x / ω μ 1 ) cos ( − k i x x + k i z z − ω t ) (5-1) \left\{\begin{matrix} E_{iy} & = &\cos(-k_{ix}x+k_{iz}z-\omega t) \\ H_{ix} & = &(k_{iz}/\omega\mu_1)\cos(-k_{ix}x+k_{iz}z-\omega t)\\ H_{iz} & = &(k_{ix}/\omega\mu_1)\cos(-k_{ix}x+k_{iz}z-\omega t)\\ \end{matrix} \right. \tag{5-1} ⎩⎨⎧EiyHixHiz===cos(−kixx+kizz−ωt)(kiz/ωμ1)cos(−kixx+kizz−ωt)(kix/ωμ1)cos(−kixx+kizz−ωt)(5-1) 反射电磁场: { E r y = R T E cos ( − k r x x + k r z z − ω t ) H r x = ( k r z / ω μ 1 ) R T E cos ( − k i r x + k r z z − ω t ) H r z = ( k r x / ω μ 1 ) R T E cos ( − k r x x + k r z z − ω t ) (5-2) \left\{\begin{matrix} E_{ry} & = &R^{TE}\cos(-k_{rx}x+k_{rz}z-\omega t) \\ H_{rx} & = &(k_{rz}/\omega\mu_1)R^{TE}\cos(-k_{ir}x+k_{rz}z-\omega t)\\ H_{rz} & = &(k_{rx}/\omega\mu_1)R^{TE}\cos(-k_{rx}x+k_{rz}z-\omega t)\\ \end{matrix} \right. \tag{5-2} ⎩⎨⎧EryHrxHrz===RTEcos(−krxx+krzz−ωt)(krz/ωμ1)RTEcos(−kirx+krzz−ωt)(krx/ωμ1)RTEcos(−krxx+krzz−ωt)(5-2) 透射电磁场: { E t y = T T E cos ( − k t x x + k t z z − ω t ) H t x = ( k t z / ω μ 2 ) T T E cos ( − k t x x + k t z z − ω t ) H t z = ( k t x / ω μ 2 ) T T E cos ( − k t x x + k t z z − ω t ) (5-3) \left\{\begin{matrix} E_{ty} & = &T^{TE}\cos(-k_{tx}x+k_{tz}z-\omega t) \\ H_{tx} & = &(k_{tz}/\omega\mu_2)T^{TE}\cos(-k_{tx}x+k_{tz}z-\omega t)\\ H_{tz} & = &(k_{tx}/\omega\mu_2)T^{TE}\cos(-k_{tx}x+k_{tz}z-\omega t)\\ \end{matrix} \right. \tag{5-3} ⎩⎨⎧EtyHtxHtz===TTEcos(−ktxx+ktzz−ωt)(ktz/ωμ2)TTEcos(−ktxx+ktzz−ωt)(ktx/ωμ2)TTEcos(−ktxx+ktzz−ωt)(5-3) 反射系数: R T E = ε 1 cos θ i − ε 2 cos θ t ε 1 cos θ i + ε 2 cos θ t (6-1) R^{TE}=\frac{\sqrt{\varepsilon_1}\cos\theta_i-\sqrt{\varepsilon_2}\cos\theta_t}{\sqrt{\varepsilon_1}\cos\theta_i+\sqrt{\varepsilon_2}\cos\theta_t} \tag{6-1} RTE=ε1 cosθi+ε2 cosθtε1 cosθi−ε2 cosθt(6-1) 透射系数: T T E = 2 ε 1 cos θ i ε 1 cos θ i + ε 2 cos θ t (6-2) T^{TE}=\frac{2\sqrt{\varepsilon_1}\cos\theta_i}{\sqrt{\varepsilon_1}\cos\theta_i+\sqrt{\varepsilon_2}\cos\theta_t} \tag{6-2} TTE=ε1 cosθi+ε2 cosθt2ε1 cosθi(6-2)
S H V 二 面 角 = [ − cos 2 ψ sin 2 ψ sin 2 ψ cos 2 ψ ] S_{HV}^{二面角}= \begin{bmatrix} -\cos2\psi & \sin2\psi \\ \sin2\psi & \cos2\psi \end{bmatrix} SHV二面角=[−cos2ψsin2ψsin2ψcos2ψ]
当 ψ = 9 0 ∘ \psi=90^\circ ψ=90∘时,极化散射矩阵为:
A = [ 1 0 0 − 1 ] A=\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} A=[100−1]