捷联惯导系统学习6.12(随机系统的可控性、可观性与滤波器的稳定性分析 )

it2024-01-02  84

随机系统模型为 { X k = Φ k / k − 1 X k − 1 + Γ k / k − 1 W k − 1 Z k = H k X k + V k \begin{cases} X_k=\Phi_{k/k-1}X_{k-1}+\Gamma_{k/k-1}W_{k-1}\\ Z_k=H_kX_k+V_k\\ \end{cases} {Xk=Φk/k1Xk1+Γk/k1Wk1Zk=HkXk+Vk

随机可控性

如果对于时刻j,存在正整数N,使得: Λ ( j , j + N ) : 随 机 可 控 性 格 莱 姆 矩 阵 \Lambda(j,j+N):随机可控性格莱姆矩阵 Λ(j,j+N):(stochastic controllability Gramian matrix) Λ ( j , j + N ) = ∑ i = j j + N Φ j + N / i Γ i − 1 Q i − 1 Γ i − 1 T Φ j + N / i T > 0 \Lambda(j,j+N)=\sum^{j+N}_{i=j}\Phi_{j+N/i}\Gamma_{i-1}Q_{i-1}\Gamma^T_{i-1}\Phi^T_{j+N/i}>0 Λ(j,j+N)=i=jj+NΦj+N/iΓi1Qi1Γi1TΦj+N/iT>0 随机可控性的含义;

X j + N X_{j+N} Xj+N X j X_j Xj之间的关系

X j + N X_{j+N} Xj+N X j + N = Φ j + N / j + N − 1 X j + N − 1 + Γ j + N − 1 W j + N − 1 = Φ j + N / j + N − 1 ( Φ j + N − 1 / j + N − 2 X j + N − 2 + Γ j + N − 2 W j + N − 2 ) + Γ j + N − 1 W j + N − 1 = Φ j + N / j + N − 2 X j + N − 2 + Φ j + N / j + N − 1 Γ j + N − 2 W j + N − 2 + Φ j + N / j + N Γ j + N − 1 W j + N − 1 . . . = Φ j + N / j X j + ∑ i = j + 1 j + N Φ j + N / i Γ i − 1 W i − 1 X_{j+N}=\Phi_{j+N/j+N-1}X_{j+N-1}+\Gamma_{j+N-1}W_{j+N-1}\\ =\Phi_{j+N/j+N-1}(\Phi_{j+N-1/j+N-2}X_{j+N-2}+\Gamma_{j+N-2}W_{j+N-2})+\Gamma_{j+N-1}W_{j+N-1} \\ =\Phi_{j+N/j+N-2}X_{j+N-2}+\Phi_{j+N/j+N-1}\Gamma_{j+N-2}W_{j+N-2}+\Phi_{j+N/j+N}\Gamma_{j+N-1}W_{j+N-1}\\ ...\\ =\Phi_{j+N/j}X_j+\sum_{i=j+1}^{j+N}\Phi_{j+N/i}\Gamma_{i-1}W_{i-1} Xj+N=Φj+N/j+N1Xj+N1+Γj+N1Wj+N1=Φj+N/j+N1(Φj+N1/j+N2Xj+N2+Γj+N2Wj+N2)+Γj+N1Wj+N1=Φj+N/j+N2Xj+N2+Φj+N/j+N1Γj+N2Wj+N2+Φj+N/j+NΓj+N1Wj+N1...=Φj+N/jXj+i=j+1j+NΦj+N/iΓi1Wi1

得到 X j + N − Φ j + N / j X j = ∑ i = j + 1 j + N Φ j + N / i Γ i − 1 W i − 1 X_{j+N}-\Phi_{j+N/j}X_j=\sum_{i=j+1}^{j+N}\Phi_{j+N/i}\Gamma_{i-1}W_{i-1} Xj+NΦj+N/jXj=i=j+1j+NΦj+N/iΓi1Wi1

求方差: E [ ( X j + N − Φ j + N / j X j ) ( X j + N − Φ j + N / j X j ) T ] E[(X_{j+N}-\Phi_{j+N/j}X_j)(X_{j+N}-\Phi_{j+N/j}X_j)^T] E[(Xj+NΦj+N/jXj)(Xj+NΦj+N/jXj)T] E [ ( X j + N − Φ j + N / j X j ) ( X j + N − Φ j + N / j X j ) T ] = E [ ( ∑ i = j + 1 j + N Φ j + N / i Γ i − 1 W i − 1 ) ( ∑ i = j + 1 j + N Φ j + N / i Γ i − 1 W i − 1 ) T ] = ∑ i = j j + N Φ j + N / i Γ i − 1 Q i − 1 Γ i − 1 T Φ j + N / i T = Λ ( j , j + N ) E[(X_{j+N}-\Phi_{j+N/j}X_j)(X_{j+N}-\Phi_{j+N/j}X_j)^T] \\ =E[(\sum_{i=j+1}^{j+N}\Phi_{j+N/i}\Gamma_{i-1}W_{i-1})(\sum_{i=j+1}^{j+N}\Phi_{j+N/i}\Gamma_{i-1}W_{i-1})^T] \\ =\sum^{j+N}_{i=j}\Phi_{j+N/i}\Gamma_{i-1}Q_{i-1}\Gamma^T_{i-1}\Phi^T_{j+N/i}\\ =\Lambda(j,j+N) E[(Xj+NΦj+N/jXj)(Xj+NΦj+N/jXj)T]=E[(i=j+1j+NΦj+N/iΓi1Wi1)(i=j+1j+NΦj+N/iΓi1Wi1)T]=i=jj+NΦj+N/iΓi1Qi1Γi1TΦj+N/iT=Λ(j,j+N)

随机可控性含义:从任意 X j X_j Xj出发,使得 X j + N = 0 X_{j+N}=0 Xj+N=0的概率为正,即 P { X j + N } > 0 P\{X_{j+N}\}>0 P{Xj+N}>0

对于线性定常系统,完全随机可控性意味着从任意给定的状态 X j X_j Xj出发,总能以正概率到达任何状态的 X j + N X_{j+N} Xj+N

对于线性定常系统,一致完全可控性(任意时刻完全随机可控的)可以等价于如下秩判据: r a n k ( [ Γ Q 1 / 2 Φ 1 Γ Q 1 / 2 Φ 2 Γ Q 1 / 2 . . . Φ n − 1 Γ Q 1 / 2 ] ) = n rank( \left[\begin{matrix} \Gamma Q^{1/2}&\Phi^1\Gamma Q^{1/2}&\Phi^2\Gamma Q^{1/2}&...&\Phi^{n-1}\Gamma Q^{1/2}\\ \end{matrix}\right])=n rank([ΓQ1/2Φ1ΓQ1/2Φ2ΓQ1/2...Φn1ΓQ1/2])=n

随机可观性

随机客观性莱姆矩阵: Θ ( j , j + N ) = ∑ i = j j + N Φ i / j T H i T R i − 1 H i Φ i / j \Theta(j,j+N)=\sum_{i=j}^{j+N}\Phi^T_{i/j}H^T_iR_i^{-1}H_i\Phi_{i/j} Θ(j,j+N)=i=jj+NΦi/jTHiTRi1HiΦi/j

设有量测序列的某种线性组合: { Z j , Z j + 1 , . . . , Z j + N } \{Z_j,Z_{j+1},...,Z_{j+N}\} {Zj,Zj+1,...,Zj+N} X j ∗ = Θ − 1 ( j , j + N ) ∑ i = j j + N Φ i / j T H i T R i − 1 Z i s t : Θ ( j , j + N ) = ∑ i = j j + N Φ i / j T H i T R i − 1 H i Φ i / j X_j^*=\Theta^{-1}(j,j+N)\sum_{i=j}^{j+N}\Phi^T_{i/j}H_i^TR_i^{-1}Z_i \\ st:\\ \Theta(j,j+N)=\sum_{i=j}^{j+N}\Phi^T_{i/j}H^T_iR_i^{-1}H_i\Phi_{i/j} Xj=Θ1(j,j+N)i=jj+NΦi/jTHiTRi1Zist:Θ(j,j+N)=i=jj+NΦi/jTHiTRi1HiΦi/j

求期望 E [ X j ∗ ] E[X_j^*] E[Xj] E [ X j ∗ ] = Θ − 1 ( j , j + N ) ∑ i = j j + N Φ i / j T H i T R i − 1 E [ Z i ] = Θ − 1 ( j , j + N ) ∑ i = j j + N Φ i / j T H i T R i − 1 H i E [ X i ] E[X^*_j]=\Theta^{-1}(j,j+N)\sum^{j+N}_{i=j}\Phi^T_{i/j}H^T_iR^{-1}_iE[Z_i]\\ =\Theta^{-1}(j,j+N)\sum^{j+N}_{i=j}\Phi^T_{i/j}H^T_iR^{-1}_iH_iE[X_i]\\ E[Xj]=Θ1(j,j+N)i=jj+NΦi/jTHiTRi1E[Zi]=Θ1(j,j+N)i=jj+NΦi/jTHiTRi1HiE[Xi]

X i = Φ i / j X j + ∑ m = j + i i Φ i / m Γ m − 1 W m − 1 X_i=\Phi_{i/j}X_j+\sum^i_{m=j+i}\Phi_{i/m}\Gamma_{m-1}W_{m-1} Xi=Φi/jXj+m=j+iiΦi/mΓm1Wm1

得到 E [ X j ∗ ] = E [ X j ] E[X^*_j]=E[X_j] E[Xj]=E[Xj] E [ X j ∗ ] = Θ − 1 ( j , j + N ) ∑ i = j j + N Φ i / j T H i T R i − 1 H i E [ Φ i / j X j + ∑ m = j + 1 i Φ i / m Γ m − 1 W m − 1 ] = Θ − 1 ( j , j + 1 ) ∑ i = j j + N Φ i / j T H i T R i − 1 H i Φ i / j E [ X j ] = E [ X j ] E[X^*_j]=\Theta^{-1}(j,j+N)\sum_{i=j}^{j+N}\Phi^T_{i/j}H^T_iR^{-1}_iH_iE[\Phi_{i/j}X_j+\sum^i_{m=j+1}\Phi_{i/m}\Gamma_{m-1}W_{m-1}]\\ =\Theta^{-1}(j,j+1)\sum^{j+N}_{i=j}\Phi^T_{i/j}H^T_iR^{-1}_iH_i\Phi_{i/j}E[X_j]\\ =E[X_j] E[Xj]=Θ1(j,j+N)i=jj+NΦi/jTHiTRi1HiE[Φi/jXj+m=j+1iΦi/mΓm1Wm1]=Θ1(j,j+1)i=jj+NΦi/jTHiTRi1HiΦi/jE[Xj]=E[Xj]

Θ ( j , j + N ) > 0 , X j ∗ 就 是 j 时 刻 X j 的 无 偏 估 计 \Theta(j,j+N)>0,X^*_j就是j时刻X_j的无偏估计 Θ(j,j+N)>0,XjjXj Θ ( j , j + N ) \Theta(j,j+N) Θ(j,j+N)不确定,就无法实现无偏估计

对于线性定常系统一致可观性(对于任意时刻可观)等价于如下秩判距: r a n k ( [ R − 1 / 2 H R − 1 / 2 H Φ R − 1 / 2 H Φ 2 . . . R − 1 / 2 H Φ n − 1 ] ) = n rank(\left[\begin{matrix} R^{-1/2}H\\R^{-1/2}H\Phi\\R^{-1/2}H\Phi^2\\...\\R^{-1/2}H\Phi^{n-1} \end{matrix}\right])=n rank(R1/2HR1/2HΦR1/2HΦ2...R1/2HΦn1)=n

kalman滤波器的稳定性分析

随机系统模型: { X k = Φ k / k − 1 X k − 1 + Γ k − 1 W k − 1 Z k = H k X k + V k \begin{cases} X_k=\Phi_{k/k-1}X_{k-1}+\Gamma_{k-1}W_{k-1}\\ Z_k=H_kX_k+V_k\\ \end{cases} {Xk=Φk/k1Xk1+Γk1Wk1Zk=HkXk+Vk

kalman滤波状态方程为: X ^ k = Φ k / k − 1 X ^ k − 1 + K k ( Z k − H k Φ k / k − 1 X ^ k − 1 ) = ( I − K k H k ) Φ k / k − 1 X ^ k − 1 + K k Z k = G k / k − 1 X ^ k − 1 + K k Z k \hat X_k=\Phi_{k/k-1}\hat X_{k-1}+K_k(Z_k-H_k\Phi_{k/k-1}\hat X_{k-1}) \\ =(I-K_kH_k)\Phi_{k/k-1}\hat X_{k-1}+K_kZ_k \\ =G_{k/k-1} \hat X_{k-1}+K_kZ_k X^k=Φk/k1X^k1+Kk(ZkHkΦk/k1X^k1)=(IKkHk)Φk/k1X^k1+KkZk=Gk/k1X^k1+KkZk

推广形式可控阵为: Λ ‾ ( j , j + N ) = Φ j + N / j P j Φ j + N / j T + ∑ i = j j + N Φ j + N / i Γ i − 1 Q i − 1 Γ i − 1 T Φ j + N / i T = Φ j + N / j P j Φ j + N / j T + Λ ( j , j + N ) \overline\Lambda(j,j+N)=\Phi_{j+N/j}P_j\Phi^T_{j+N/j}+\sum_{i=j}^{j+N}\Phi_{j+N/i}\Gamma_{i-1}Q_{i-1}\Gamma^T_{i-1}\Phi^T_{j+N/i}\\ =\Phi_{j+N/j}P_j\Phi^T_{j+N/j}+\Lambda(j,j+N) Λ(j,j+N)=Φj+N/jPjΦj+N/jT+i=jj+NΦj+N/iΓi1Qi1Γi1TΦj+N/iT=Φj+N/jPjΦj+N/jT+Λ(j,j+N) 完全随机可控稳定:系统通过可控性分解后,分为可控部分和不可控部分,其中不可控部分稳定。 完全随机可检测:系统通过可观性分解后,分为可观和不可观部分,不可观部分是稳定的 。 可控性可观性分解 Kalman滤波器稳定的三种条件:

随机系统模型随机可控并且已知完全随机可观,kalman滤波器稳定随机系统的推广形式随机可控并且已知完全随机可观,kalman滤波器稳定对于定常系统,随机系统模型完全随机可控稳定并且完全随机可检测,则kalman滤波器稳定
最新回复(0)