使用for循环直接逐个求解,算法复杂度为 O ( n ) O(n) O(n)
/** * <p>暴力解法</p> * @param startInclusive * @param endExclusive * @return */ public int sumByDirect(int startInclusive, int endExclusive){ int sum = 0; for (int i = startInclusive; i < endExclusive; i++) { sum += i; } return sum; }同暴力解法一样,不过使用了声明式的流式编程,代码量更少并且更加的具有可读性
/** * <p>流式编程</p> * @param startInclusive * @param endExclusive * @return */ public int sumByStream(int startInclusive, int endExclusive){ return IntStream.range(startInclusive, endExclusive).sum(); }利用等差数列求和公式 S n = ( a 1 + a 2 ) × n 2 S_n=\cfrac{(a_1+a_2)\times n}{2} Sn=2(a1+a2)×n 复杂度为 O ( 1 ) O(1) O(1)
/** * <p>利用求和公式</p> * @param startInclusive * @param endExclusive * @return */ public int sumByFormula(int startInclusive, int endExclusive){ return ((startInclusive + endExclusive - 1) * (endExclusive - startInclusive) ) >> 1; }输出:
sumByDirect=5050 sumByStream=5050 sumByFormula=5050