目录
前言
问题一:梯度是个啥?
问题二:梯度下降有啥用?
那么什么是损失函数(误差函数)?
问题三:梯度为啥要下降?
综上所述
刚接触机器学习的同学避不开的一个专业名词就是梯度下降。顿时心里万马奔腾,其实很简单的,你先得理解概念才能看到那些公式不怂。(当然本文全程无公式,书写用时2小时,阅读估计10分钟)
本文主要解决三个问题:
1. 梯度到底是啥?2. 梯度下降有啥用?3. 为啥要下降?
你如果能回答这个问题基本看书上梯度下降一些公式就清楚很多了。
解:依题意可得
翻译问题。☞按照问题一的解决方法可知:我们将“梯度为啥要下降?”这个问题翻译为:找误差函数最小值所对应的自变量,为啥要让导数的绝对值变小。我们看下图这个二次函数对应曲线就是误差函数(也就是损失函数,一般是叫损失函数,误差函数是我为了好理解说的),自变量是算法的参数,函数值是该参数下所产生拟合曲线与真实值之间的误差值。注意了,注意了,注意了:一般你看到梯度下降的公式最好想到下面这个图,对就假设误差函数就这么特殊,都是开口朝上,都是平滑的,都是只有一个导数为0的点,都是弯一下而不是弯很多下。
平常我们怎么求损失函数(误差函数)最小值?☞我们目标是求这个损失函数(误差函数)最小值时候对应自变量的值,也就是求曲线最低点自变量x的取值。用高中知识怎求最小值?老师说了求最值不要怂,上来求个导,然后让导函数为0时候取最值。告诉你还真就可以这么干的,简单粗暴。不过这个方法不是梯度下降,它有个很高端大气上档次的名字叫做正规方程(Normal Equation),吓到了吧这么简单的原理居然名字这么高端,所以嘛梯度下降也差不多就名字吓人而已。但是为啥这么简单粗暴容易理解,为啥还要用梯度下降呢?因为一般来说越简单粗暴的方法效率越低~,正规方程在数据量大时候太慢了,就像冒泡排序那么简单为啥排序算法一般不用冒泡排序一样。敲重点了>>>梯度下降和这个原理类似见下面梯度下降怎么求损失函数(误差函数)最小值?☞假如你拿着手机地图不用导航去找一个目的地怎么走?我一般是往某个方向走一段路程,然后发现好像离目的地近了,然后产生一个想法“这个方向能使得我离目的地距离更小”,然后我继续沿着这个方向走。(你就会疑问该不会梯度下降就这么做的吧,没错就是这么做的)。
注意了,注意了,注意了:一般你看到梯度下降的公式最好想到下面那个图,对就假设误差函数就这么特殊,都是开口朝上,都是平滑的,都是只有一个导数为0的点,都是弯一下而不是弯很多下。(哈哈怕你记不得,复制粘贴一遍)
想象下:
按照上面那个图的特点,假设这个图放大1万倍,大到你不能一眼看到最小值。那么要你找最小值对应的自变量x,你怎么找??记住我们目的是为了找自变量x,记住我们目的是为了找x
你将可能会在电脑屏幕看到原先那个图的局部,按照它们单调性来分主要有这三种情况
当你遇到情况1:单调下降,导数为负(梯度为负),要想找到函数的最小值所对应的自变量的值(曲线最低点对应x的值)怎么走?当然是水平向右滑啦,也就是让x增大,此时随着x增大,导数(梯度)的绝对值是减小的(梯度下降含义懂了吧哈哈就这个意思)
当你遇到情况2:单调上升,导数为正(梯度为正),要想找到函数的自变量的值(曲线最低点对应x的值)怎么走?当然是水平向左滑啦,也就是让x减小,此时随着x减小,导数(梯度)的绝对值是减小的(也就是梯度下降)。
初学者学习交流机器学习资料分享Q群(718566626)
