Python3 相关功能代码:
import io import sys import math # 调用reduce 函数 from functools import reduce sys.stdout = io.TextIOWrapper(sys.stdout.detach(),encoding='utf-8') # Python3 高阶函数之函数即变量 # print函数赋值给变量p p = print # 通过变量p 调用print函数 p("高阶函数之函数即变量") # Python3 高阶函数之传入函数 def add(x,y,z): return abs(x) + abs(y) result = add(-11,128,abs) print("result is:",result) # Python3 匿名函数 r = 10 area = lambda r:math.pi*r*r print('半价为',r,'的面积为:',area(r)) # Python3 map 函数 number =[1,2,3,4,5,6,7,8,9] print(list(map(lambda x: x*x, number))) # Python3 reduce 函数 number =[1,2,3,4,5,6,7,8,9] print(print(reduce(lambda x,y:x+y, number))) # Python3 filter 函数 st =['A', '', 'C', 'D', ''] print(list(filter(lambda x: x and x.strip(),st))) # Python3 sorted 函数之数字排序 a =[11,90,-1,20,17] print(sorted(a)) # Python3 sorted 函数之字符串排序 aa =['a','12','b','z'] print(sorted(aa)) # Python3 之函数实现面向对象编程 #函数实现面向对象编程 def person(name,age,gender): #理解一个人种类 def play(name): print("[%s],正在玩python" %(name['name'])) def eat(name): print("[%s]正在吃饭"%(name["name"])) def init(name,age,gender): person1 = { "name":name, "age":age, "gender":gender, "play":play, "eat":eat } return person1 return init(name,age,gender) aa = person("肉肉",2,"male") #可以简单理解为生成了一个人的实例 aa["play"](aa) #调用人的方法 aa["eat"](aa) # Python 3 类定义 class Data: '''类定义''' pass obj = Data() print(type(obj)) # Python3 类属性 class China: people='Chinese' print('China 类属性people:' + China.people) # Python3 类方法 class English: def speak(self): print("%s 是个发达国家" %self) country ='英国' English.speak(country) # Python3 输出类属性和方法方式一 print(dir(China)) # Python3 输出类属性和方法方式二 print(English.__dict__) # Python3 输出类指定属性或方法 print(English.__dict__['speak']) # Python3 实例对象 class Student: def __init__(self,name,age,gender): self.name = name self.age = age self.gender = gender def score(self): print("%s 成绩是99 "%self.name) def play(self): print("%s 喜欢玩球,年龄是 %s" %(self.name,self.age)) one = Student("肉肉",2,"male") print(one.name) one.score() one.play() # Python3 类的静态方法 class People(object): def __init__(self, name): self.name = name @staticmethod def eat(food): print('肉肉 is eating %s' % food) rourou = People('肉肉') rourou.eat('牛肉') # Python3 类方法 class Person(object): name = '肉肉' def __init__(self, name): self.name = name @classmethod def eat(self, food): print('%s is eating %s' % (self.name, food)) meta = Person('肉肉') meta.eat('牛肉') # Python3 静态属性之删除 class Man(object): def __init__(self, name): self.name = name self.__food = None @property def eat(self): print('%s is eating %s' % (self.name, self.__food)) @eat.setter def eat(self, food): # print('set food to eat', food) self.__food = food @eat.deleter def eat(self): del self.__food sheep = Man('肉肉') sheep.eat = '鹿肉' sheep.eat del sheep.eat # Python3 之子类调用父类的方法 class Vehicle: # 定义交通工具类 父类 def __init__(self, name, speed, load, power): self.name = name self.speed = speed self.load = load self.power = power def run(self): print('开动啦...') class Subway(Vehicle): # 地铁 子类 def __init__(self, name, speed, load, power, line): super(Subway,self).__init__(name,speed,load,power) #注:调用父类的属性 self.line = line def run(self): print('地铁%s号线欢迎您' % self.line) super(Subway,self).run() #子类调用父类的方法supper line13 = Subway('中国地铁', '180m/s', '1000人/箱', '电', 13) line13.run() # Python3 之面向对象之类型判断 class Foo(object): #父类 pass class Bar(Foo): #父类的派生类 pass print(issubclass(Bar, Foo)) #True # Python 3 面向对象之反射 class BlackMedium: feature='Ugly' def __init__(self,name,addr): self.name=name self.addr=addr def sell_house(self): print('%s 黑中介卖房子啦,傻逼才买呢,但是谁能证明自己不傻逼' %self.name) def rent_house(self): print('%s 黑中介租房子啦,傻逼才租呢' %self.name) b1=BlackMedium('万成置地','回龙观天露园') # 检测是否含有某属性 print(hasattr(b1,'name')) print(hasattr(b1,'sell_house')) # 获取属性 n=getattr(b1,'name') print(n) func=getattr(b1,'rent_house') func() # 设置属性 setattr(b1,'sb',True) setattr(b1,'show_name',lambda self:self.name+'sb') print(b1.__dict__) print(b1.show_name(b1)) # 删除属性 delattr(b1,'addr') delattr(b1,'name') #delattr(b1,'show_name111')#不存在,则报错 # Python3 之getattr__和__getattribute__ class Foo: # def __setattr__(self, key, value): # print("setaaaa") # self.__dict__[key] = value def __getattr__(self, item): #可以把__getattr__和__getattribute__分别注释看看 print("执行getattr") def __getattribute__(self, item): print("执行attribute") #无论有没有该属性,都执行 raise AttributeError("这是错误异常") #遇到异常 ,去执行__getattr__ #raise 错误属性 ("抛出异常的错误内容") aa = Foo() aa.ssssss #不存在该属性会执行__getattribute__xxxxxxxxxx #__setitem__,__getitem,__delitem__ class Foo: def __init__(self,name): self.name = name def __getitem__(self, item): print("执行getitem") return self.__dict__[item] def __setitem__(self, key, value): print("执行setitem") #为了让效果明显所以用print self.__dict__[key] = value def __delitem__(self, key): print("del obj[key],执行") self.__dict__.pop(key) def __delattr__(self, item): print("del obj.key,执行") self.__dict__.pop(item) n = Foo("xiaoxi") # print(n.__dict__) # del n.name #执行delattr # del n["name"] #执行delitem n["age"] = 18 #执行setitem print(n["age"]) #执行getitem # __setattr__,__delattr__,__getattr__ class Foo1: x=1 def __init__(self,y): self.y=y def __getattr__(self, item): print('----> from getattr:你找的属性不存在') def __setattr__(self, key, value): print('----> from setattr') # self.key=value #这就无限递归了,你好好想想 self.__dict__[key]=value #应该使用它 def __delattr__(self, item): print('----> from delattr') # del self.item #无限递归了 self.__dict__.pop(item) #__setattr__添加/修改属性会触发它的执行 f1=Foo1(10) print(f1.__dict__) # 因为你重写了__setattr__,凡是赋值操作都会触发它的运行,你啥都没写,就是根本没赋值,除非你直接操作属性字典,否则永远无法赋值 f1.z=3 #添加 print(f1.__dict__) #__delattr__删除属性的时候会触发 f1.__dict__['a']=3#我们可以直接修改属性字典,来完成添加/修改属性的操作 del f1.a print(f1.__dict__) #__getattr__只有在使用点调用属性且属性不存在的时候才会触发 f1.xxxxxx # _str__,__repr__ class Bar: def __init__(self,name,age): self.name = name self.age = age def __str__(self): print("this str") return "名字是%s age%s" %(self.name,self.age) def __repr__(self): #转换字符串,在解释器中执行 print("thsi repr") return "%s" %self.name test = Bar("xi",10) print(test) print(test.__repr__()) #print(repr(test)) 执行的是__repr__ # __format__ #和生成实例化对象的内容相对应 menu = {"ymd":"{0.year}{0.month}{0.day}", "y-m-d":"{0.year}-{0.month}-{0.day}"} class Foo: def __init__(self,year,month,day): self.year = year self.month = month self.day = day def __format__(self, format_spec): #format_spec指定格式化的类型 # print(format_spec,self) if not format_spec or format_spec not in menu: #如果没有传入格式,或则在menu中没有这个格式 format_spec = "ymd" #则格式化的默认格式是ymd ,在menu中有 fm = menu[format_spec] #通过menu字典格式化成相应格式的类型 # print(fm) return fm.format(self) #把对象传入,格式化的内容 ss = Foo(2016,12,26) # print(format(ss,"ymd")) print(format(ss,"y-m-d")) print(format(ss,"4565456")) # __next__和__iter__ class Foo: def __init__(self,n): self.n = n def __iter__(self): return self def __next__(self): if self.n ==15: raise StopIteration("已经迭代完了") #抛出异常的提示信息 StopIteration: 已经迭代完了 self.n += 1 return self.n aa = Foo(10) print(aa.n) print(next(aa)) print(next(aa)) print(next(aa)) print(next(aa)) print(next(aa)) print(next(aa))参考文章地址:https://www.cnblogs.com/keme/p/6220853.html#auto_id_15
https://www.cnblogs.com/zhangxinqi/p/8081731.html