空值:numpy.nan 、 numpy.NaN 、 numpy.NAN
两个numpy.nan不相等 import numpy as np print(np.nan==np.nan) # Falsenumpy.isnan(x, *args, **kwargs)
Test element-wise for NaN and return result as a boolean array import numpy as np x=np.array([1,2,np.nan,3,4]) y=np.isnan(x) print(y) # [False False True False False] z=np.count_nonzero(y) print(z) # 1 np.count_nonzero(x) #正无穷大:numpy.inf、numpy.Inf、numpy.infty、numpy.Infinity、numpy.PINF
numpy.inf 与其他数值的比较 import numpy as np print(np.inf > 100000) # True圆周率:numpy.pi
自然常数:numpy.e
datatime64
日期/时间 单位含义Y年M月W周D天h小时m分钟s秒ms毫秒us微妙ns纳秒ps皮秒fs飞秒as阿托秒 默认情况下,numpy根据字符串自动选择对应的单位 import numpy as np x=np.datatime64('2020-10-20') print(x,x.dtype) x=np.datatime64('2020-10-20 21:50') print(x,x.dtype) 强制制定单位 import numpy as np x=np.datatime64('2020-10','D') print(x,x.dtype) x=np.datatime64('2020-10','Y') print(x,x.dtype) print(np.datetime64('2020-10') == np.datetime64('2020-10-01')) # True # 2020-10 和 2020-10-01 所表示的是同一个时间 print(np.datetime64('2020-10') == np.datetime64('2020-10-02')) #False从字符串创建 datetime64 数组
单位不统一,则一律转化成其中小的单位
import numpy as np x = np.array(['2020-03', '2020-03-08', '2020-03-08 20:00'], dtype='datetime64') print(x, x.dtype) arange() 创建datatime64数组 import numpy as np a = np.arange('2020-08-01', '2020-08-10', dtype=np.datetime64) print(a) print(a.dtype) a = np.arange('2020-08-01 20:00', '2020-08-10', dtype=np.datetime64) print(a) print(a.dtype) a = np.arange('2020-05', '2020-12', dtype=np.datetime64) print(a) print(a.dtype)numpy.busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None)
numpy.is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None)
numpy.busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None)
numpy 提供的重要的数据结构是 ndarray ,它是 python 中 list 的扩展。
def array(p_object, dtype=None, copy=True, order='K', subok=False, ndmin=0):
通过asarray()创建 def asarray(a, dtype=None, order=None): return array(a, dtype, copy=False, order=order) 通过fromfunction()创建def fromfunction(function, shape, **kwargs):