PyTorch:tensor-数据处理

it2023-11-17  62

-柚子皮-

函数functional.one_hot

自动检测类别个数

import torch.nn.functional as F import torch

tensor =  torch.arange(0, 5) % 3  # tensor([0, 1, 2, 0, 1]) one_hot = F.one_hot(tensor)

# 输出: # tensor([[1, 0, 0], #         [0, 1, 0], #         [0, 0, 1], #         [1, 0, 0], #         [0, 1, 0]])

F.one_hot会自动检测不同类别个数,生成对应独热编码。

指定类别数

tensor =  torch.arange(0, 5) % 3  # tensor([0, 1, 2, 0, 1]) one_hot = F.one_hot(tensor, num_classes=5)

# 输出: # tensor([[1, 0, 0, 0, 0], #         [0, 1, 0, 0, 0], #         [0, 0, 1, 0, 0], #         [1, 0, 0, 0, 0], #         [0, 1, 0, 0, 0]])

 

填充句子到相同长度pad_sequence

torch.nn.utils.rnn.pad_sequence(sequences, batch_first=False, padding_value=0.0)

用padding_value 填充一系列可变长度的tensor,把它们填充到等长

示例1:

>>> from torch.nn.utils.rnn import pad_sequence >>> a = torch.ones(25, 300) >>> b = torch.ones(22, 300) >>> c = torch.ones(15, 300) >>> pad_sequence([a, b, c]).size() torch.Size([25, 3, 300])

示例2:

from torch.nn.utils.rnn import pad_sequence import torch a=torch.randn(3) b=torch.randn(5) c=torch.randn(7) >>> a tensor([ 0.7160,  1.2006, -1.8447]) >>> b tensor([ 0.3941,  0.3839,  0.1166, -0.7221,  1.8661]) >>> c tensor([-0.6521,  0.0681,  0.6626, -0.3679, -0.6042,  1.6951,  0.4937]) >>> pad_sequence([a,b,c],batch_first=True,padding_value=1) tensor([[ 0.7160,  1.2006, -1.8447,  1.0000,  1.0000,  1.0000,  1.0000],         [ 0.3941,  0.3839,  0.1166, -0.7221,  1.8661,  1.0000,  1.0000],         [-0.6521,  0.0681,  0.6626, -0.3679, -0.6042,  1.6951,  0.4937]])

[pad_sequence —— 填充句子到相同长度]

from: -柚子皮-

ref: 

 

最新回复(0)