什么是numpy?
numpy是python中基于数组对象的科学计算库。 提炼关键字,可以得出numpy以下三大特点: 拥有n维数组对象; 拥有广播功能(后面讲到); 拥有各种科学计算API,任你调用;
如何安装numpy?
因为numpy是一个python库,所以使用python包管理工具pip或者conda都可以安装。 安装python后,打开cmd命令行,输入:
import numpy
as np
np
.array
([1,2,3])
array([1, 2, 3])
[[0, 1, 2],
[3, 4, 5]]
[[0, 1, 2], [3, 4, 5]]
[[[ 0, 1, 2],
[ 3, 4, 5]],
[[ 6, 7, 8],
[ 9, 10, 11]]]
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]]
以此类推n维数组。
以下表达式运行的结果分别是什么?
print(0 * np
.nan
)
print(np
.nan
== np
.nan
)
print(np
.inf
> np
.nan
)
print(np
.nan
- np
.nan
)
print(0.3 == 3 * 0.1)
nan
False
False
nan
False
将numpy的datetime64对象转换为datetime的datetime对象。
dt64 = np.datetime64('2020-02-25 22:10:10')
【知识点:时间日期和时间增量】
如何将numpy的datetime64对象转换为datetime的datetime对象?
import datetime
dt64
= np
.datetime64
('2020-02-25 22:10:10')
dt
= dt64
.astype
(datetime
.datetime
)
print(dt
, type(dt
))
2020-02-25 22:10:10 <class 'datetime.datetime'>
给定一系列不连续的日期序列。填充缺失的日期,使其成为连续的日期序列。
dates = np.arange('2020-02-01', '2020-02-10', 2, np.datetime64)
【知识点:时间日期和时间增量、数学函数】
如何填写不规则系列的numpy日期中的缺失日期?
dates
= np
.arange
('2020-10-01', '2020-10-10', 2, np
.datetime64
)
print(dates
)
out
= []
for date
, d
in zip(dates
, np
.diff
(dates
)):
out
.extend
(np
.arange
(date
, date
+ d
))
fillin
= np
.array
(out
)
output
= np
.hstack
([fillin
, dates
[-1]])
print(output
)
['2020-10-01' '2020-10-03' '2020-10-05' '2020-10-07' '2020-10-09']
['2020-10-01' '2020-10-02' '2020-10-03' '2020-10-04' '2020-10-05'
'2020-10-06' '2020-10-07' '2020-10-08' '2020-10-09']
如何得到昨天,今天,明天的的日期
【知识点:时间日期】
(提示: np.datetime64, np.timedelta64)
yesterday
= np
.datetime64
('today', 'D') - np
.timedelta64
(1, 'D')
today
= np
.datetime64
('today', 'D')
tomorrow
= np
.datetime64
('today', 'D') + np
.timedelta64
(1, 'D')
print ("Yesterday is " + str(yesterday
))
print ("Today is " + str(today
))
print ("Tomorrow is "+ str(tomorrow
))
Yesterday is 2020-10-19
Today is 2020-10-20
Tomorrow is 2020-10-21
创建从0到9的一维数字数组。
【知识点:数组的创建】
如何创建一维数组?
arr
= np
.full
([3, 3], True, dtype
=np
.bool)
arr
array([[ True, True, True],
[ True, True, True],
[ True, True, True]])
Z
= np
.zeros
(10)
Z
[4] = 1
Z
array([0., 0., 0., 0., 1., 0., 0., 0., 0., 0.])
Z
= np
.arange
(10,50)
Z
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49])
Z
= np
.random
.random
((3,3,3))
Z
array([[[0.58975752, 0.36880841, 0.86640695],
[0.73045766, 0.83352645, 0.87464867],
[0.34377583, 0.76675101, 0.70832659]],
[[0.05321132, 0.24235274, 0.99574699],
[0.07691529, 0.56842261, 0.50275675],
[0.81253279, 0.35894042, 0.65485902]],
[[0.47219338, 0.78056415, 0.62234288],
[0.37120171, 0.64616385, 0.01597434],
[0.28351658, 0.4924925 , 0.80099443]]])
Z
= np
.ones
((10,10))
Z
[1:-1,1:-1] = 0
Z
array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])
start
= 5
step
= 3
length
= 10
a
= np
.arange
(start
, start
+ step
* length
, step
)
print(a
)
[ 5 8 11 14 17 20 23 26 29 32]