空值的表示||空值互不相等: nan = NaN = NAN
import numpy as np print(np.nan == np.nan) # False print(np.nan != np.nan) # True1.利用字典来定义结构
import numpy as np personType = np.dtype({ 'names': ['name', 'age', 'weight'], 'formats': ['U30', 'i8', 'f8']}) a = np.array([('Liming', 24, 63.9), ('Mike', 15, 67.), ('Jan', 34, 45.8)], dtype=personType) print(a, type(a)) # [('Liming', 24, 63.9) ('Mike', 15, 67. ) ('Jan', 34, 45.8)] # <class 'numpy.ndarray'>2.利用包含多个元组的列表来定义结构
import numpy as np personType = np.dtype([('name', 'U30'), ('age', 'i8'), ('weight', 'f8')]) a = np.array([('Liming', 24, 63.9), ('Mike', 15, 67.), ('Jan', 34, 45.8)], dtype=personType) print(a, type(a)) # [('Liming', 24, 63.9) ('Mike', 15, 67. ) ('Jan', 34, 45.8)] # <class 'numpy.ndarray'> # 结构数组的取值方式和一般数组差不多,可以通过下标取得元素: print(a[0]) # ('Liming', 24, 63.9) print(a[-2:]) # [('Mike', 15, 67. ) ('Jan', 34, 45.8)] # 我们可以使用字段名作为下标获取对应的值 print(a['name']) # ['Liming' 'Mike' 'Jan'] print(a['age']) # [24 15 34] print(a['weight']) # [63.9 67. 45.8]