pytorch安装

it2023-10-17  74

python3.6

pip3 install torchvision==0.2.0

MNIST手写数字0-9训练集下载 链接:https://pan.baidu.com/s/1kUiARaVTdFNAfJoS5xx6pw 提取码:xttr

错误

raise NotSupportedError(base.range(), "slicing multiple dimensions at the sa

借用一下其他大佬的测试代码

import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms # 设置网络结构 class Net(nn.Module): def __init__(self, in_features, out_features): super(Net, self).__init__() self.dnn1 = nn.Linear(in_features, 512) # 第一层全连接层 self.dnn2 = nn.Linear(512, out_features) # 第二层全连接层 def forward(self, x): x = F.relu(self.dnn1(x)) # relu激活 x = self.dnn2(x) return x net = Net(28 * 28, 10) # 加载MNIST数据集 train_dataset = datasets.MNIST('../data/MNIST', train=True, download=False, transform=transforms.ToTensor()) test_dataset = datasets.MNIST('../data/MNIST', train=False, download=False, transform=transforms.ToTensor()) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=128, shuffle=False) # print(net) # 开始训练 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(net.parameters(), lr=0.02) for epoch in range(5): running_loss, running_acc = 0.0, 0.0 for i, data in enumerate(train_loader): img, label = data img = img.reshape(-1, 28 * 28) out = net(img) loss = criterion(out, label) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() * label.size(0) _, predicted = torch.max(out, 1) running_acc += (predicted == label).sum().item() print('Epoch [{}/5], Step [{}/{}], Loss: {:.6f}, Acc: {:.6f}'.format( epoch + 1, i + 1, len(train_loader), loss.item(), (predicted == label).sum().item() / 128)) # 测试 test_loss, test_acc = 0.0, 0.0 for i, data in enumerate(test_loader): img, label = data img = img.reshape(-1, 28 * 28) out = net(img) loss = criterion(out, label) test_loss += loss.item() * label.size(0) _, predicted = torch.max(out, 1) test_acc += (predicted == label).sum().item() print("Train {} epoch, Loss: {:.6f}, Acc: {:.6f}, Test_Loss: {:.6f}, Test_Acc: {:.6f}".format( epoch + 1, running_loss / (len(train_dataset)), running_acc / (len(train_dataset)), test_loss / (len(test_dataset)), test_acc / (len(test_dataset))))

效果

最新回复(0)